Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Chinese
Size:
10K<n<100K
License:
| # coding=utf-8 | |
| # Copyright 2020 HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """Introduction to People's Daily Dataset""" | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _DESCRIPTION = """\ | |
| People's Daily NER Dataset is a commonly used dataset for Chinese NER, with | |
| text from People's Daily (人民日报), the largest official newspaper. | |
| The dataset is in BIO scheme. Entity types are: PER (person), ORG (organization) | |
| and LOC (location). | |
| """ | |
| _URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/People's%20Daily/" | |
| _TRAINING_FILE = "example.train" | |
| _DEV_FILE = "example.dev" | |
| _TEST_FILE = "example.test" | |
| class PeoplesDailyConfig(datasets.BuilderConfig): | |
| """BuilderConfig for People's Daily NER""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig for People's Daily NER. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(PeoplesDailyConfig, self).__init__(**kwargs) | |
| class PeoplesDailyNer(datasets.GeneratorBasedBuilder): | |
| """People's Daily NER dataset.""" | |
| BUILDER_CONFIGS = [ | |
| PeoplesDailyConfig( | |
| name="peoples_daily_ner", version=datasets.Version("1.0.0"), description="People's Daily NER dataset" | |
| ), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "O", | |
| "B-PER", | |
| "I-PER", | |
| "B-ORG", | |
| "I-ORG", | |
| "B-LOC", | |
| "I-LOC", | |
| ] | |
| ) | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/People's%20Daily", | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| urls_to_download = { | |
| "train": f"{_URL}{_TRAINING_FILE}", | |
| "dev": f"{_URL}{_DEV_FILE}", | |
| "test": f"{_URL}{_TEST_FILE}", | |
| } | |
| downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
| ] | |
| def _generate_examples(self, filepath): | |
| logger.info("⏳ Generating examples from = %s", filepath) | |
| with open(filepath, encoding="utf-8") as f: | |
| guid = 0 | |
| tokens = [] | |
| ner_tags = [] | |
| for line in f: | |
| line_stripped = line.strip() | |
| if line_stripped == "": | |
| if tokens: | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |
| guid += 1 | |
| tokens = [] | |
| ner_tags = [] | |
| else: | |
| splits = line_stripped.split(" ") | |
| if len(splits) == 1: | |
| splits.append("O") | |
| tokens.append(splits[0]) | |
| ner_tags.append(splits[1]) | |
| # last example | |
| yield guid, { | |
| "id": str(guid), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |