You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Filipino Flourishing Overview - Embeddings

Dataset Description

This dataset contains vector embeddings for the research paper "Framework for Filipino Equivalents of Flourishing and Eudaimonia: Kahampatan Case with 25-Dimensional Rubric" by Paul Pajo.

Dataset Summary

  • Total Embeddings: 8
  • Embedding Dimension: 384
  • Model Used: all-MiniLM-L6-v2
  • Source Document: FilipinoFlourishingOverview.json
  • Date Created: 2025-10-18

Supported Tasks

  • Semantic search
  • Document similarity
  • Text clustering
  • Information retrieval

Dataset Structure

Data Fields

  • chunk_id: Unique identifier for each text chunk
  • text: The full text content of the chunk
  • embedding: 384-dimensional vector embedding (list of floats)
  • page: Page number in the source document
  • section: Section title from the document
  • char_count: Number of characters in the text
  • word_count: Number of words in the text
  • estimated_tokens: Estimated token count

Data Splits

This dataset contains a single split with 8 examples.

Model Information

  • Model: sentence-transformers/all-MiniLM-L6-v2
  • Architecture: BERT-based
  • Embedding Dimension: 384
  • Normalization: L2 normalized (unit vectors)
  • Max Sequence Length: 256 tokens

Usage

from datasets import load_dataset
import numpy as np

# Load the dataset
dataset = load_dataset("YOUR_USERNAME/filipino-flourishing-embeddings")

# Access embeddings
embeddings = np.array(dataset['train']['embedding'])

# Access text
texts = dataset['train']['text']

# Compute similarity
from sklearn.metrics.pairwise import cosine_similarity
similarities = cosine_similarity(embeddings)

Citation

@article{pajo2025kahampatan,
  title={Framework for Filipino Equivalents of Flourishing and Eudaimonia: Kahampatan Case with 25-Dimensional Rubric},
  author={Pajo, Paul},
  year={2025}
}

License

MIT License

Downloads last month
18