Filipino Flourishing Overview - Embeddings
Dataset Description
This dataset contains vector embeddings for the research paper "Framework for Filipino Equivalents of Flourishing and Eudaimonia: Kahampatan Case with 25-Dimensional Rubric" by Paul Pajo.
Dataset Summary
- Total Embeddings: 8
- Embedding Dimension: 384
- Model Used: all-MiniLM-L6-v2
- Source Document: FilipinoFlourishingOverview.json
- Date Created: 2025-10-18
Supported Tasks
- Semantic search
- Document similarity
- Text clustering
- Information retrieval
Dataset Structure
Data Fields
chunk_id: Unique identifier for each text chunktext: The full text content of the chunkembedding: 384-dimensional vector embedding (list of floats)page: Page number in the source documentsection: Section title from the documentchar_count: Number of characters in the textword_count: Number of words in the textestimated_tokens: Estimated token count
Data Splits
This dataset contains a single split with 8 examples.
Model Information
- Model: sentence-transformers/all-MiniLM-L6-v2
- Architecture: BERT-based
- Embedding Dimension: 384
- Normalization: L2 normalized (unit vectors)
- Max Sequence Length: 256 tokens
Usage
from datasets import load_dataset
import numpy as np
# Load the dataset
dataset = load_dataset("YOUR_USERNAME/filipino-flourishing-embeddings")
# Access embeddings
embeddings = np.array(dataset['train']['embedding'])
# Access text
texts = dataset['train']['text']
# Compute similarity
from sklearn.metrics.pairwise import cosine_similarity
similarities = cosine_similarity(embeddings)
Citation
@article{pajo2025kahampatan,
title={Framework for Filipino Equivalents of Flourishing and Eudaimonia: Kahampatan Case with 25-Dimensional Rubric},
author={Pajo, Paul},
year={2025}
}
License
MIT License
- Downloads last month
- 18