CAFOSat / dataset.py
oishee3003's picture
Upload dataset.py with huggingface_hub
d11614b verified
raw
history blame
7.25 kB
from datasets import DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Split, Features, Value, ClassLabel, Image, Sequence
import csv
import datasets
import ast
class CAFOSatConfig(datasets.BuilderConfig):
def __init__(self, split_column=None, data_filter=None, **kwargs):
super().__init__(**kwargs)
self.split_column = split_column # e.g., 'cafosat_set1_training_train'
self.data_filter = data_filter # e.g., 'verified', 'augmented', 'neg', 'cafo'
class CAFOSat(GeneratorBasedBuilder):
BUILDER_CONFIGS = [
# Train/test/val configs
CAFOSatConfig(name="verified_train", split_column="cafosat_verified_training_train", description="Verified training split"),
CAFOSatConfig(name="verified_val", split_column="cafosat_verified_training_val", description="Verified validation split"),
CAFOSatConfig(name="verified_test", split_column="cafosat_verified_training_test", description="Verified test split"),
CAFOSatConfig(name="all_train", split_column="cafosat_all_training_train", description="All training split"),
CAFOSatConfig(name="all_val", split_column="cafosat_all_training_val", description="All validation split"),
CAFOSatConfig(name="all_test", split_column="cafosat_all_training_test", description="All test split"),
CAFOSatConfig(name="set1_train", split_column="cafosat_training_set1_train", description="Set1 training split"),
CAFOSatConfig(name="set1_val", split_column="cafosat_training_set1_val", description="Set1 validation split"),
CAFOSatConfig(name="set1_test", split_column="cafosat_training_set1_test", description="Set1 test split"),
CAFOSatConfig(name="set2_train", split_column="cafosat_training_set2_train", description="Set2 training split"),
CAFOSatConfig(name="set2_val", split_column="cafosat_training_set2_val", description="Set2 validation split"),
CAFOSatConfig(name="set2_test", split_column="cafosat_training_set2_test", description="Set2 test split"),
CAFOSatConfig(name="merged_train", split_column="cafosat_merged_training_train", description="Merged training split"),
CAFOSatConfig(name="merged_val", split_column="cafosat_merged_training_val", description="Merged validation split"),
CAFOSatConfig(name="merged_test", split_column="cafosat_merged_training_test", description="Merged test split"),
CAFOSatConfig(name="augmented_train", split_column="cafosat_augmented_training_train", description="Augmented training split"),
CAFOSatConfig(name="augmented_val", split_column="cafosat_augmented_training_val", description="Augmented validation split"),
CAFOSatConfig(name="augmented_test", split_column="cafosat_augmented_training_test", description="Augmented test split"),
# Data type filters
CAFOSatConfig(name="verified_only", data_filter="verified", description="Only verified patches"),
CAFOSatConfig(name="verified_cafo_only", data_filter="verified_cafo", description="Only verified cafo patches"),
CAFOSatConfig(name="augmented_only", data_filter="augmented", description="Only augmented patches"),
CAFOSatConfig(name="negatives_only", data_filter="neg", description="Only negative examples"),
CAFOSatConfig(name="cafo_only", data_filter="cafo", description="Only positive CAFOs (label > 0)"),
CAFOSatConfig(name="all", data_filter="all", description="All Patches"),
]
DEFAULT_CONFIG_NAME = "all_train"
def _info(self):
return DatasetInfo(
description="CAFOSat: Remote sensing CAFO dataset with bounding boxes and infrastructure tags.",
features=Features({
"patch_file": Image(),
"label": ClassLabel(
names=["Negative", "Swine", "Dairy", "Beef", "Poultry", "Horses", "Sheep/Goats"]
),
"barn": Value("float32"),
"manure_pond": Value("float32"),
"grazing_area": Value("float32"),
"others": Value("float32"),
"geom_bbox": Sequence(Value("float32")),
"category": Value("string"),
"state": Value("string"),
"image_type": Value("string"),
"CAFO_UNIQUE_ID": Value("string"),
"verified_label": Value("string"),
"patch_res": Value("string"),
"refine_x": Value("string"),
"refine_y": Value("string")
}),
supervised_keys=None,
homepage="https://huggingface.co/datasets/oishee3003/CAFOSat",
license="cc-by-4.0"
)
def _split_generators(self, dl_manager):
csv_path = dl_manager.download_and_extract("cafosat.csv")
return [
SplitGenerator(name=Split.TRAIN, gen_kwargs={"csv_path": csv_path})
]
def _generate_examples(self, csv_path):
split_col = self.config.split_column
data_filter = self.config.data_filter
with open(csv_path, encoding="utf-8") as f:
reader = csv.DictReader(f)
for idx, row in enumerate(reader):
include = True
# Apply split filtering
if split_col:
if row.get(split_col, "0") != "1":
continue
# Apply type-based filtering
if data_filter == "augmented":
include = "augmented" in row.get("image_type", "").lower()
elif data_filter == "verified":
include = bool(row.get("verified_label", "").strip())
elif data_filter == "verified_cafo_only":
include = bool(row.get("verified_label", "CAFO").strip())
elif data_filter == "neg":
include = int(row.get("label", 0)) < 0
elif data_filter == "cafo":
include = int(row.get("label", 0)) > 0
elif data_filter == "all":
include = True
if not include:
continue
try:
bbox = ast.literal_eval(row.get("geom_bbox", "[5.0, 5.0, 700.0, 700.0]"))
except:
bbox = [5.0, 5.0, 700.0, 700.0]
yield idx, {
"patch_file": row["patch_file"],
"label": int(row["label"]),
"barn": float(row.get("barn", 0)),
"manure_pond": float(row.get("manure_pond", 0)),
"grazing_area": float(row.get("grazing_area", 0)),
"others": float(row.get("others", 0)),
"geom_bbox": bbox,
"category": row.get("category", ""),
"state": row.get("state", ""),
"image_type": row.get("image_type", ""),
"CAFO_UNIQUE_ID": row.get("CAFO_UNIQUE_ID", ""),
"verified_label": row.get("verified_label", ""),
"patch_res": row.get("patch_res", ""),
"refine_x": row.get("refine_x", ""),
"refine_y": row.get("refine_y", "")
}