Datasets:
File size: 3,859 Bytes
9d47498 e30d075 ae12898 e30d075 ae12898 e30d075 ae12898 e30d075 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 ae12898 9d47498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
license: cc-by-4.0
tags:
- remote-sensing
- satellite-imagery
- agriculture
- classification
- multi-label
- bounding-box
dataset_type: image-classification
pretty_name: CAFOSat Dataset
size_categories:
- 10K<n<100K
---
# CAFOSat: CAFO Infrastructure Dataset
CAFOSat is a remote sensing dataset designed for identifying and classifying Concentrated Animal Feeding Operations (CAFOs) across various U.S. states. It includes high-resolution image patches, infrastructure annotations, bounding boxes, and experimental train-test splits for multiple configurations.
---
## Dataset Structure
The dataset is organized into extracted folders originally packaged as `.tar.gz` files:
- `STATE_filtered/`: Original patches per U.S. state
(e.g., `IA_filtered/`, `AL_filtered/`)
- `negative_samples/`: Verified non-CAFO examples
- `barn/`, `manure_pond/`, `others/`: Augmented synthetic patches by infrastructure type
- `cafosat.csv`: Master metadata file with labels, bounding boxes, and split flags
All image paths referenced in the CSV point to these extracted folders.
---
## 🔖 Image File Reference (`patch_file`)
Each row in the metadata includes a `patch_file` field that provides the relative path to the associated image file.
Each `patch_file` is a pointer into a compressed archive using Hugging Face's streaming format:
Example:
-`IA_filtered.tar.gz::IA_filtered/crop_4517_patch_10147_Swine_Nursery_IA.tif`
- `barn.tar.gz::`barn/aug_patch_00123.tif`
- `negative_sample.tar.gz::`barn/neg_patch_00098.tif`
This format indicates the image is located inside `IA_filtered.tar.gz` under the subpath shown. This field is automatically interpreted by Hugging Face as an image using the `datasets.Image()` feature, so image previews and loading work out of the box.
---
## Features
| Column | Description |
|---------------|-------------------------------------------------------|
| `patch_file` | Path to the image file |
| `label` | Integer label for class (0–6) |
| `barn`, `manure_pond`, `grazing_area`, `others` | Binary infra flags |
| `geom_bbox` | Bounding box coordinates `[x1, y1, x2, y2]` |
| `category` | Class name (e.g., Swine, Dairy) |
| `state` | U.S. state of the patch |
| `verified_label` | Human-verified CAFO type |
| `CAFO_UNIQUE_ID` | Unique identifier for facility |
| `image_type` | `original`, `augmented`, `negative`, etc. |
| `split columns` | Flags for different train/test/val splits |
---
## Labels
| Class ID | Class Name |
|----------|----------------|
| 0 | Negative |
| 1 | Swine |
| 2 | Dairy |
| 3 | Beef |
| 4 | Poultry |
| 5 | Horses |
| 6 | Sheep/Goats |
---
## Splits
Multiple experimental train-test split columns are provided in the CSV:
- `cafosat_verified_training_train`, `cafosat_verified_training_test`, `cafosat_verified_training_val`
- `cafosat_all_training_*`
- `cafosat_training_set1_*`, `set2_*`
- `cafosat_merged_training_*`
- `cafosat_augmented_training_*`
Each flag is a binary indicator (`1` = in split, `0` = excluded).
---
## Intended Use
- CAFO detection and classification
- Agricultural infrastructure mapping
- Weak supervision, semi-supervised learning
- Remote sensing benchmark development
---
## Citation
*TBD
---
## License
This dataset is released under the [CC BY 4.0 License](https://creativecommons.org/licenses/by/4.0/).
You are free to share, use, and adapt the data with attribution.
## Contact
For questions or contributions, contact `[email protected]`.
|