File size: 2,042 Bytes
b1a1e23 656afd0 b1a1e23 cafec9f b1a1e23 cafec9f b1a1e23 a5ee2e7 52eff67 b1a1e23 ec9e905 52eff67 ec9e905 217ff0d 22b7b70 52eff67 ec9e905 52eff67 ec9e905 52eff67 ec9e905 3247fb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
dataset_info:
features:
- name: input_image
dtype: image
- name: edit_prompt
dtype: string
- name: edited_image
dtype: image
- name: index
dtype: int64
splits:
- name: train
num_bytes: 8686582352.97
num_examples: 7265
download_size: 8686714223
dataset_size: 8686582352.97
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: cc-by-nc-4.0
task_categories:
- image-to-image
- text-to-image
language:
- en
tags:
- ar
size_categories:
- 1K<n<10K
---
# 🖼️ Portrait to Anime Style Tranfer Data
This dataset consists of paired human and corresponding anime-style images, accompanied by descriptive prompts. The human images are sourced from the CelebA dataset, and the anime-style counterparts were generated using a combination of state-of-the-art GAN architectures and diffusion models.
It is designed to support a wide range of tasks,
- **GAN research**
- **Diffusion model fine-tuning**
- **Model evaluation**
- **Benchmarking for image-to-image and text-to-image generation**.
## 📁 Dataset Structure
Each sample contains:
- `input_image`: Original image
- `edit_prompt`: Text instruction describing the desired style
- `edited_image`: Resulting image after applying the edit
- `index`: default integer with 0 value
## 🚀 How to Use
```python
from datasets import load_dataset
# Replace with your dataset path
dataset = load_dataset("murali1729S/portrait_2_avatar",split="train")
```
## 📚 References
This dataset builds upon the following works:
- W. Xiao *et al.*, "**Appearance-Preserved Portrait-to-Anime Translation via Proxy-Guided Domain Adaptation**," *IEEE Transactions on Visualization and Computer Graphics*, vol. 30, no. 7, pp. 3104–3120, July 2024. [https://doi.org/10.1109/TVCG.2022.3228707](https://doi.org/10.1109/TVCG.2022.3228707)
- Z. Liu, P. Luo, X. Wang, and X. Tang, "**Deep Learning Face Attributes in the Wild**," in *Proceedings of the International Conference on Computer Vision (ICCV)*, December 2015. |