import datasets import xml.etree.cElementTree as ET from glob import glob import os _UFSAC_FILE = 'ufsac-public-2.1.tar.xz' class UFSAC(datasets.GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = datasets.BuilderConfig def _info(self): feature = { 'tokens': datasets.Sequence(datasets.Value('string')), 'lemmas': datasets.Sequence(datasets.Value('string')), 'pos_tags': datasets.Sequence(datasets.Value('string')), 'target_idx': datasets.Value('int32'), 'sense_keys': datasets.Sequence(datasets.Value('string')), } return datasets.DatasetInfo( features=datasets.Features(feature), description = 'UFSAC: the unified Sense Annotated Corpora and Tool' ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_UFSAC_FILE) return datasets.SplitGenerator(name = datasets.Split.TRAIN, gen_kwargs={'data_dir': data_dir}), def _generate_examples(self, data_dir): used_sents = set() count = 0 for file in glob(os.path.join(data_dir, 'ufsac-public-2.1/*.xml')): context = ET.iterparse(file, events=('start', 'end')) event, root = next(context) for event, element in context: if element.tag == 'paragraph': para = element if element.tag != 'sentence': continue if event == 'end' and element.tag == 'sentence': para.remove(element) sent = element words = sent.findall('word') tokens = [token.attrib['surface_form'] if 'surface_form' in token.attrib else '_' for token in words] sent_key = ''.join([token.lower() for token in tokens]) if sent_key in used_sents: continue used_sents.add(sent_key) lemmas = [token.attrib['lemma'] if 'lemma' in token.attrib else '_' for token in words] pos_tags = [token.attrib['pos'] if 'pos' in token.attrib else '_' for token in words] for index, word in enumerate(words): if 'wn30_key' in word.attrib: senses = word.attrib['wn30_key'].split(';') yield count, { 'tokens': tokens, 'lemmas': lemmas, 'pos_tags': pos_tags, 'target_idx': index, 'sense_keys': senses } count+=1