liyucheng commited on
Commit
2bb6f56
·
1 Parent(s): fecdfb9

Upload 2 files

Browse files
Files changed (2) hide show
  1. ufsac-public-2.1.tar.xz +3 -0
  2. ufsac_dataset.py +55 -0
ufsac-public-2.1.tar.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39c05f5ac3c657d1892ecb94d2207a02026406bc3e44dc50621e50fec7eed6e9
3
+ size 196134720
ufsac_dataset.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import xml.etree.cElementTree as ET
3
+ from glob import glob
4
+ import os
5
+
6
+ _UFSAC_FILE = 'ufsac-public-2.1.tar.xz'
7
+
8
+ class UFSAC(datasets.GeneratorBasedBuilder):
9
+
10
+ BUILDER_CONFIG_CLASS = datasets.BuilderConfig
11
+
12
+ def _info(self):
13
+ feature = {
14
+ 'tokens': datasets.Sequence(datasets.Value('string')),
15
+ 'lemmas': datasets.Sequence(datasets.Value('string')),
16
+ 'pos_tags': datasets.Sequence(datasets.Value('string')),
17
+ 'target_idx': datasets.Value('int32'),
18
+ 'sense_keys': datasets.Sequence(datasets.Value('string')),
19
+ }
20
+
21
+ return datasets.DatasetInfo(
22
+ features=datasets.Features(feature),
23
+ description = 'UFSAC: the unified Sense Annotated Corpora and Tool'
24
+ )
25
+
26
+ def _split_generators(self, dl_manager):
27
+ data_dir = dl_manager.download_and_extract(_UFSAC_FILE)
28
+ return datasets.SplitGenerator(name = datasets.Split().TRAIN, gen_kwargs={'data_dir': data_dir})
29
+
30
+ def _generate_examples(self, data_dir):
31
+ used_sents = set()
32
+ count = 0
33
+ for file in glob(os.path.join(data_dir, '*.xml')):
34
+ tree = ET.parse(file)
35
+ root = tree.getroot()
36
+ for sent in root.iter('sentence'):
37
+ words = sent.findall('word')
38
+ tokens = [token.attrib['surface_form'] for token in words]
39
+ sent_key = ''.join(tokens)
40
+ if sent_key not in used_sents:
41
+ used_sents.add(sent_key)
42
+ else:
43
+ continue
44
+ lemmas = [token.attrib['lemma'] for token in words]
45
+ pos_tags = [token.attrib['pos'] for token in words]
46
+ for index, word in enumerate(words):
47
+ if 'wn30_key' in word.attrib:
48
+ senses = word.attrib['wn30_key'].split(';')
49
+ yield count, {
50
+ 'tokens': tokens,
51
+ 'lemmas': lemmas,
52
+ 'pos_tags': pos_tags,
53
+ 'target_index': index,
54
+ 'sense_keys': senses
55
+ }