Create german_legal_sentences.py
Browse files- german_legal_sentences.py +285 -0
german_legal_sentences.py
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import datasets
|
| 5 |
+
from datasets import Value, Sequence, ClassLabel, Features
|
| 6 |
+
|
| 7 |
+
_CITATION = """\
|
| 8 |
+
coming soon
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
_DESCRIPTION = """\
|
| 12 |
+
German Legal Sentences (GLS) is an automatically generated training dataset for semantic sentence
|
| 13 |
+
matching in the domain in german legal documents. It follows the concept of weak supervision, where
|
| 14 |
+
imperfect labels are generated using multiple heuristics. For this purpose we use a combination of
|
| 15 |
+
legal citation matching and BM25 similarity. The contained sentences and their citations are parsed
|
| 16 |
+
from real judicial decisions provided by [Open Legal Data](http://openlegaldata.io/)
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
_VERSION = "0.0.2"
|
| 20 |
+
_DATA_URL = f"http://lavis.cs.hs-rm.de/storage/german-legal-sentences/GermanLegalSentences_v{_VERSION}.zip"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class GLSConfig(datasets.BuilderConfig):
|
| 24 |
+
"""BuilderConfig."""
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
load_collection,
|
| 29 |
+
load_es_neighbors=None,
|
| 30 |
+
n_es_neighbors=None,
|
| 31 |
+
**kwargs,
|
| 32 |
+
):
|
| 33 |
+
"""BuilderConfig.
|
| 34 |
+
Args:
|
| 35 |
+
**kwargs: keyword arguments forwarded to super.
|
| 36 |
+
"""
|
| 37 |
+
super(GLSConfig, self).__init__(**kwargs)
|
| 38 |
+
self.load_collection = load_collection
|
| 39 |
+
self.load_es_neighbors = load_es_neighbors
|
| 40 |
+
self.n_es_neighbors = n_es_neighbors
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class GermanLegalSentences(datasets.GeneratorBasedBuilder):
|
| 44 |
+
BUILDER_CONFIGS = [
|
| 45 |
+
GLSConfig(
|
| 46 |
+
name="sentences",
|
| 47 |
+
load_es_neighbors=False,
|
| 48 |
+
load_collection=False,
|
| 49 |
+
version=datasets.Version(_VERSION, ""),
|
| 50 |
+
description="Just the sentences and their masked references",
|
| 51 |
+
),
|
| 52 |
+
GLSConfig(
|
| 53 |
+
name="pairs",
|
| 54 |
+
load_es_neighbors=False,
|
| 55 |
+
load_collection=True,
|
| 56 |
+
version=datasets.Version(_VERSION, ""),
|
| 57 |
+
description="Sentence pairs sharing references",
|
| 58 |
+
),
|
| 59 |
+
GLSConfig(
|
| 60 |
+
name="pairs+es",
|
| 61 |
+
load_es_neighbors=True,
|
| 62 |
+
load_collection=True,
|
| 63 |
+
n_es_neighbors=5,
|
| 64 |
+
version=datasets.Version(_VERSION, ""),
|
| 65 |
+
description="Sentence pairs sharing references plus ES neighbors",
|
| 66 |
+
),
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
+
def _features(self):
|
| 70 |
+
if self.config.name == "sentences":
|
| 71 |
+
return datasets.Features(
|
| 72 |
+
{
|
| 73 |
+
"sent_id": Value("uint32"),
|
| 74 |
+
"doc_id": Value("uint32"),
|
| 75 |
+
"text": Value("string"),
|
| 76 |
+
"references": Sequence(
|
| 77 |
+
{
|
| 78 |
+
"ref_id": Value("uint32"),
|
| 79 |
+
"name": Value("string"),
|
| 80 |
+
"type": ClassLabel(names=["AZ", "LAW"]),
|
| 81 |
+
}
|
| 82 |
+
),
|
| 83 |
+
}
|
| 84 |
+
)
|
| 85 |
+
elif self.config.name == "pairs":
|
| 86 |
+
return Features(
|
| 87 |
+
{
|
| 88 |
+
"query.sent_id": Value("uint32"),
|
| 89 |
+
"query.doc_id": Value("uint32"),
|
| 90 |
+
"query.text": Value("string"),
|
| 91 |
+
"query.ref_ids": Sequence(Value("uint32")),
|
| 92 |
+
"related.sent_id": Value("uint32"),
|
| 93 |
+
"related.doc_id": Value("uint32"),
|
| 94 |
+
"related.text": Value("string"),
|
| 95 |
+
"related.ref_ids": Sequence(Value("uint32")),
|
| 96 |
+
}
|
| 97 |
+
)
|
| 98 |
+
elif self.config.name == "pairs+es":
|
| 99 |
+
return Features(
|
| 100 |
+
{
|
| 101 |
+
"query.sent_id": Value("uint32"),
|
| 102 |
+
"query.doc_id": Value("uint32"),
|
| 103 |
+
"query.text": Value("string"),
|
| 104 |
+
"query.ref_ids": Sequence(Value("uint32")),
|
| 105 |
+
"related.sent_id": Value("uint32"),
|
| 106 |
+
"related.doc_id": Value("uint32"),
|
| 107 |
+
"related.text": Value("string"),
|
| 108 |
+
"related.ref_ids": Sequence(Value("uint32")),
|
| 109 |
+
"es_neighbors.text": Sequence(Value("string")),
|
| 110 |
+
"es_neighbors.sent_id": Sequence(Value("uint32")),
|
| 111 |
+
"es_neighbors.doc_id": Sequence(Value("uint32")),
|
| 112 |
+
"es_neighbors.ref_ids": Sequence(
|
| 113 |
+
Sequence(datasets.Value("uint32"))
|
| 114 |
+
),
|
| 115 |
+
}
|
| 116 |
+
)
|
| 117 |
+
assert True
|
| 118 |
+
|
| 119 |
+
def _info(self):
|
| 120 |
+
return datasets.DatasetInfo(
|
| 121 |
+
description=_DESCRIPTION,
|
| 122 |
+
features=self._features(),
|
| 123 |
+
supervised_keys=None,
|
| 124 |
+
homepage="",
|
| 125 |
+
citation=_CITATION,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
def _split_generators(self, dl_manager):
|
| 129 |
+
if dl_manager.manual_dir:
|
| 130 |
+
data_dir = Path(dl_manager.manual_dir)
|
| 131 |
+
else:
|
| 132 |
+
data_dir = Path(dl_manager.download_and_extract(_DATA_URL))
|
| 133 |
+
collection = _load_collection(data_dir) if self.config.load_collection else None
|
| 134 |
+
sent_ref_map = _load_sent_references(data_dir)
|
| 135 |
+
references = (
|
| 136 |
+
_load_reference_info(data_dir) if self.config.name == "sentences" else None
|
| 137 |
+
)
|
| 138 |
+
es_neighbors = (
|
| 139 |
+
_load_es_neighbors(data_dir) if self.config.load_es_neighbors else None
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
gen_kwargs = dict()
|
| 143 |
+
for split in ("train", "valid", "test"):
|
| 144 |
+
gen_kwargs[split] = {
|
| 145 |
+
"collection": collection,
|
| 146 |
+
"pair_id_file": data_dir / f"{split}.pairs.tsv",
|
| 147 |
+
"sentence_file": data_dir / f"{split}.sentences.tsv",
|
| 148 |
+
"references": references,
|
| 149 |
+
"sent_ref_map": sent_ref_map,
|
| 150 |
+
"es_neighbors": es_neighbors,
|
| 151 |
+
}
|
| 152 |
+
return [
|
| 153 |
+
datasets.SplitGenerator(
|
| 154 |
+
name=datasets.Split.TRAIN, gen_kwargs=gen_kwargs["train"]
|
| 155 |
+
),
|
| 156 |
+
datasets.SplitGenerator(
|
| 157 |
+
name=datasets.Split.VALIDATION, gen_kwargs=gen_kwargs["valid"]
|
| 158 |
+
),
|
| 159 |
+
datasets.SplitGenerator(
|
| 160 |
+
name=datasets.Split.TEST, gen_kwargs=gen_kwargs["test"]
|
| 161 |
+
),
|
| 162 |
+
]
|
| 163 |
+
|
| 164 |
+
def _generate_examples(self, **kwargs):
|
| 165 |
+
if self.config.name.startswith("pairs"):
|
| 166 |
+
yield from self._generate_pairs(**kwargs)
|
| 167 |
+
elif self.config.name == "sentences":
|
| 168 |
+
yield from self._generate_sentences(**kwargs)
|
| 169 |
+
else:
|
| 170 |
+
assert True
|
| 171 |
+
|
| 172 |
+
def _generate_pairs(
|
| 173 |
+
self, pair_id_file, collection, sent_ref_map, es_neighbors, **kwargs
|
| 174 |
+
):
|
| 175 |
+
random.seed(17)
|
| 176 |
+
with open(pair_id_file, encoding="utf-8") as r:
|
| 177 |
+
idx = 0
|
| 178 |
+
for line in r:
|
| 179 |
+
stripped = line.rstrip()
|
| 180 |
+
if stripped:
|
| 181 |
+
a, b = stripped.split("\t")
|
| 182 |
+
features = {
|
| 183 |
+
"query.sent_id": int(a),
|
| 184 |
+
"query.doc_id": int(collection[a]["doc_id"]),
|
| 185 |
+
"query.text": collection[a]["text"],
|
| 186 |
+
"query.ref_ids": sent_ref_map[a],
|
| 187 |
+
"related.sent_id": int(b),
|
| 188 |
+
"related.doc_id": int(collection[b]["doc_id"]),
|
| 189 |
+
"related.text": collection[b]["text"],
|
| 190 |
+
"related.ref_ids": sent_ref_map[b],
|
| 191 |
+
}
|
| 192 |
+
if self.config.name == "pairs+es":
|
| 193 |
+
curr_es_neighbors = es_neighbors.get(a) or []
|
| 194 |
+
if len(curr_es_neighbors) < self.config.n_es_neighbors:
|
| 195 |
+
continue
|
| 196 |
+
|
| 197 |
+
es_sent_ids = random.sample(
|
| 198 |
+
curr_es_neighbors, k=self.config.n_es_neighbors
|
| 199 |
+
)
|
| 200 |
+
additional_features = {
|
| 201 |
+
"es_neighbors.sent_id": [int(i) for i in es_sent_ids],
|
| 202 |
+
"es_neighbors.doc_id": [
|
| 203 |
+
int(collection[i]["doc_id"]) for i in es_sent_ids
|
| 204 |
+
],
|
| 205 |
+
"es_neighbors.text": [
|
| 206 |
+
collection[i]["text"] for i in es_sent_ids
|
| 207 |
+
],
|
| 208 |
+
"es_neighbors.ref_ids": [
|
| 209 |
+
sent_ref_map[i] for i in es_sent_ids
|
| 210 |
+
],
|
| 211 |
+
}
|
| 212 |
+
features.update(additional_features)
|
| 213 |
+
yield idx, features
|
| 214 |
+
idx += 1
|
| 215 |
+
|
| 216 |
+
def _generate_sentences(
|
| 217 |
+
self,
|
| 218 |
+
sentence_file,
|
| 219 |
+
references,
|
| 220 |
+
sent_ref_map,
|
| 221 |
+
**kwargs,
|
| 222 |
+
):
|
| 223 |
+
with open(sentence_file, encoding="utf-8") as r:
|
| 224 |
+
for idx, line in enumerate(r):
|
| 225 |
+
stripped = line.rstrip()
|
| 226 |
+
if stripped == "":
|
| 227 |
+
continue
|
| 228 |
+
s_id, doc_id, text = stripped.split("\t", maxsplit=2)
|
| 229 |
+
yield idx, {
|
| 230 |
+
"sent_id": int(s_id),
|
| 231 |
+
"doc_id": int(doc_id),
|
| 232 |
+
"text": text,
|
| 233 |
+
"references": [
|
| 234 |
+
{
|
| 235 |
+
"ref_id": int(r_id),
|
| 236 |
+
"name": references[r_id][1],
|
| 237 |
+
"type": references[r_id][0],
|
| 238 |
+
}
|
| 239 |
+
for r_id in sent_ref_map[s_id]
|
| 240 |
+
],
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def _load_collection(data_dir):
|
| 245 |
+
collection = dict()
|
| 246 |
+
for split in ("train", "valid", "test"):
|
| 247 |
+
with open(data_dir / f"{split}.sentences.tsv", encoding="utf-8") as r:
|
| 248 |
+
for line in r:
|
| 249 |
+
s_id, d_id, sent = line.strip().split("\t", maxsplit=2)
|
| 250 |
+
collection[s_id] = {"doc_id": d_id, "text": sent}
|
| 251 |
+
return collection
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def _load_reference_info(data_dir):
|
| 255 |
+
with open(data_dir / "refs.tsv", encoding="utf-8") as r:
|
| 256 |
+
references = {
|
| 257 |
+
r_id: (r_type, r_name.rstrip())
|
| 258 |
+
for r_id, r_type, r_name in (
|
| 259 |
+
line.split("\t", maxsplit=2) for line in r if len(line) > 2
|
| 260 |
+
)
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
return references
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def _load_sent_references(data_dir):
|
| 267 |
+
with open(data_dir / "sent_ref_map.tsv", encoding="utf-8") as r:
|
| 268 |
+
sent_ref_map = {
|
| 269 |
+
s_id: r_ids.rstrip().split()
|
| 270 |
+
for s_id, r_ids in (
|
| 271 |
+
line.split("\t", maxsplit=1) for line in r if len(line) > 2
|
| 272 |
+
)
|
| 273 |
+
}
|
| 274 |
+
return sent_ref_map
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def _load_es_neighbors(data_dir):
|
| 278 |
+
with open(data_dir / "es_neighbors.tsv", encoding="utf-8") as r:
|
| 279 |
+
es_neighbors = {
|
| 280 |
+
s_id: other_s_ids.rstrip().split()
|
| 281 |
+
for s_id, other_s_ids in (
|
| 282 |
+
line.split("\t", maxsplit=1) for line in r if len(line) > 2
|
| 283 |
+
)
|
| 284 |
+
}
|
| 285 |
+
return es_neighbors
|