--- language: - en license: mit task_categories: - image-to-3d - text-to-3d tags: - 3D-Generation - 3D-Edit --- # Edit3D-Bench [Paper](https://huggingface.co/papers/2508.19247) | [Project Page](https://huanngzh.github.io/VoxHammer-Page/) | [Code](https://github.com/Nelipot-Lee/VoxHammer) **Edit3D-Bench** is a benchmark for 3D editing evaluation, introduced in the paper [VoxHammer: Training-Free Precise and Coherent 3D Editing in Native 3D Space](https://huggingface.co/papers/2508.19247). This dataset comprises 100 high-quality 3D models, with 50 selected from Google Scanned Objects (GSO) and 50 from PartObjaverse-Tiny. For each model, we provide 3 distinct editing prompts. Each prompt is accompanied by a complete set of annotated 3D assets, including * original 3D asset with rendered images * **3D mask** specifying the editing region with rendered images * 2D mask of the edit region * 2D edited image generated by FLUX.1 Fill ## Preview Explore our dataset in [Project Page](https://huanngzh.github.io/VoxHammer-Page/dataset). ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6375d136dee28348a9c63cbf%2F33oW8RnFWOp2zs0vBHrQE.png) ## Which tasks will benefit from our dataset? - [x] 3D Editing ## ⚙️ Getting Started ### Download the Dataset To download the full dataset, you can use the following code. If you encounter any issues, please refer to the official Hugging Face documentation. ```Bash # Make sure you have git-lfs installed (https://git-lfs.com) git lfs install # When prompted for a password, use an access token with write permissions. # Generate one from your settings: https://huggingface.co/settings/tokens git clone https://huggingface.co/datasets/huanngzh/Edit3D-Bench # If you want to clone without large files - just their pointers GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/huanngzh/Edit3D-Bench ``` ### Dataset Structure ```Bash data/ ├── metadata.json # Dataset metadata file (dataset, object_name, prompt) ├── GSO/ # Google Scanned Objects dataset │ ├── [object_name]/ │ │ ├── source_model/ # Original 3D model │ │ │ ├── model.glb # Original 3D model file (GLB format) │ │ │ ├── render/ # Original model rendered images │ │ │ ├── video_rgb.mp4 # Original model RGB video │ │ │ ├── video_normal.mp4 # Original model normal video │ │ │ └── video_mask.mp4 # Original model mask video │ │ ├── prompt_1/ # Annotation for prompt 1 │ │ │ ├── 2d_edit.png # 2D edited image │ │ │ ├── 2d_mask.png # 2D mask image for editing │ │ │ ├── 2d_render.png # 2D render image of original model │ │ │ ├── 2d_visual.png # 2D visualization image │ │ │ ├── 3d_edit_region.glb # 3D edit region model │ │ │ └── render/ # Rendered images of 3D mask │ │ ├── prompt_2/ # Annotation for prompt 2 │ │ └── prompt_3/ # Annotation for prompt 3 │ └── ... └── PartObjaverse-Tiny/ # PartObjaverse-Tiny dataset ├── [object_id]/ │ ├── source_model/ # Original 3D model │ ├── prompt_1/ # Annotation for prompt 1 │ ├── prompt_2/ # Annotation for prompt 2 │ └── prompt_3/ # Annotation for prompt 3 └── ... ``` ### Evaluation Check details in [our github repo](https://github.com/Nelipot-Lee/VoxHammer/Edit3D-Bench). ## 🧷 Citation ```bibtex @article{li2025voxhammer, title = {VoxHammer: Training-Free Precise and Coherent 3D Editing in Native 3D Space}, author = {Li, Lin and Huang, Zehuan and Feng, Haoran and Zhuang, Gengxiong and Chen, Rui and Guo, Chunchao and Sheng, Lu}, journal = {arXiv preprint arXiv:2508.19247}, year = {2025}, url = {https://huggingface.co/papers/2508.19247} } ```