Revert Convert dataset to Parquet (#7)
Browse files- Revert "Convert dataset to Parquet (#4)" (0414fbb6b12206322200c338b48a73022adf1c73)
- README.md +22 -30
- arabic_speech_corpus.py +145 -0
- clean/test-00000-of-00001.parquet +0 -3
- clean/train-00000-of-00004.parquet +0 -3
- clean/train-00001-of-00004.parquet +0 -3
- clean/train-00002-of-00004.parquet +0 -3
- clean/train-00003-of-00004.parquet +0 -3
README.md
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
annotations_creators:
|
| 3 |
- expert-generated
|
| 4 |
language_creators:
|
|
@@ -9,6 +10,7 @@ license:
|
|
| 9 |
- cc-by-4.0
|
| 10 |
multilinguality:
|
| 11 |
- monolingual
|
|
|
|
| 12 |
size_categories:
|
| 13 |
- 1K<n<10K
|
| 14 |
source_datasets:
|
|
@@ -16,10 +18,22 @@ source_datasets:
|
|
| 16 |
task_categories:
|
| 17 |
- automatic-speech-recognition
|
| 18 |
task_ids: []
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
dataset_info:
|
| 22 |
-
config_name: clean
|
| 23 |
features:
|
| 24 |
- name: file
|
| 25 |
dtype: string
|
|
@@ -33,38 +47,16 @@ dataset_info:
|
|
| 33 |
dtype: string
|
| 34 |
- name: orthographic
|
| 35 |
dtype: string
|
|
|
|
| 36 |
splits:
|
| 37 |
- name: train
|
| 38 |
-
num_bytes:
|
| 39 |
num_examples: 1813
|
| 40 |
- name: test
|
| 41 |
-
num_bytes:
|
| 42 |
num_examples: 100
|
| 43 |
-
download_size:
|
| 44 |
-
dataset_size:
|
| 45 |
-
configs:
|
| 46 |
-
- config_name: clean
|
| 47 |
-
data_files:
|
| 48 |
-
- split: train
|
| 49 |
-
path: clean/train-*
|
| 50 |
-
- split: test
|
| 51 |
-
path: clean/test-*
|
| 52 |
-
default: true
|
| 53 |
-
train-eval-index:
|
| 54 |
-
- config: clean
|
| 55 |
-
task: automatic-speech-recognition
|
| 56 |
-
task_id: speech_recognition
|
| 57 |
-
splits:
|
| 58 |
-
train_split: train
|
| 59 |
-
eval_split: test
|
| 60 |
-
col_mapping:
|
| 61 |
-
file: path
|
| 62 |
-
text: text
|
| 63 |
-
metrics:
|
| 64 |
-
- type: wer
|
| 65 |
-
name: WER
|
| 66 |
-
- type: cer
|
| 67 |
-
name: CER
|
| 68 |
---
|
| 69 |
|
| 70 |
# Dataset Card for Arabic Speech Corpus
|
|
|
|
| 1 |
---
|
| 2 |
+
pretty_name: Arabic Speech Corpus
|
| 3 |
annotations_creators:
|
| 4 |
- expert-generated
|
| 5 |
language_creators:
|
|
|
|
| 10 |
- cc-by-4.0
|
| 11 |
multilinguality:
|
| 12 |
- monolingual
|
| 13 |
+
paperswithcode_id: arabic-speech-corpus
|
| 14 |
size_categories:
|
| 15 |
- 1K<n<10K
|
| 16 |
source_datasets:
|
|
|
|
| 18 |
task_categories:
|
| 19 |
- automatic-speech-recognition
|
| 20 |
task_ids: []
|
| 21 |
+
train-eval-index:
|
| 22 |
+
- config: clean
|
| 23 |
+
task: automatic-speech-recognition
|
| 24 |
+
task_id: speech_recognition
|
| 25 |
+
splits:
|
| 26 |
+
train_split: train
|
| 27 |
+
eval_split: test
|
| 28 |
+
col_mapping:
|
| 29 |
+
file: path
|
| 30 |
+
text: text
|
| 31 |
+
metrics:
|
| 32 |
+
- type: wer
|
| 33 |
+
name: WER
|
| 34 |
+
- type: cer
|
| 35 |
+
name: CER
|
| 36 |
dataset_info:
|
|
|
|
| 37 |
features:
|
| 38 |
- name: file
|
| 39 |
dtype: string
|
|
|
|
| 47 |
dtype: string
|
| 48 |
- name: orthographic
|
| 49 |
dtype: string
|
| 50 |
+
config_name: clean
|
| 51 |
splits:
|
| 52 |
- name: train
|
| 53 |
+
num_bytes: 1002365
|
| 54 |
num_examples: 1813
|
| 55 |
- name: test
|
| 56 |
+
num_bytes: 65784
|
| 57 |
num_examples: 100
|
| 58 |
+
download_size: 1192302846
|
| 59 |
+
dataset_size: 1068149
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
---
|
| 61 |
|
| 62 |
# Dataset Card for Arabic Speech Corpus
|
arabic_speech_corpus.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""Arabic Speech Corpus"""
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
import os
|
| 21 |
+
|
| 22 |
+
import datasets
|
| 23 |
+
from datasets.tasks import AutomaticSpeechRecognition
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
_CITATION = """\
|
| 27 |
+
@phdthesis{halabi2016modern,
|
| 28 |
+
title={Modern standard Arabic phonetics for speech synthesis},
|
| 29 |
+
author={Halabi, Nawar},
|
| 30 |
+
year={2016},
|
| 31 |
+
school={University of Southampton}
|
| 32 |
+
}
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
_DESCRIPTION = """\
|
| 36 |
+
This Speech corpus has been developed as part of PhD work carried out by Nawar Halabi at the University of Southampton.
|
| 37 |
+
The corpus was recorded in south Levantine Arabic
|
| 38 |
+
(Damascian accent) using a professional studio. Synthesized speech as an output using this corpus has produced a high quality, natural voice.
|
| 39 |
+
Note that in order to limit the required storage for preparing this dataset, the audio
|
| 40 |
+
is stored in the .flac format and is not converted to a float32 array. To convert, the audio
|
| 41 |
+
file to a float32 array, please make use of the `.map()` function as follows:
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
import soundfile as sf
|
| 46 |
+
|
| 47 |
+
def map_to_array(batch):
|
| 48 |
+
speech_array, _ = sf.read(batch["file"])
|
| 49 |
+
batch["speech"] = speech_array
|
| 50 |
+
return batch
|
| 51 |
+
|
| 52 |
+
dataset = dataset.map(map_to_array, remove_columns=["file"])
|
| 53 |
+
```
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
_URL = "http://en.arabicspeechcorpus.com/arabic-speech-corpus.zip"
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class ArabicSpeechCorpusConfig(datasets.BuilderConfig):
|
| 60 |
+
"""BuilderConfig for ArabicSpeechCorpu."""
|
| 61 |
+
|
| 62 |
+
def __init__(self, **kwargs):
|
| 63 |
+
"""
|
| 64 |
+
Args:
|
| 65 |
+
data_dir: `string`, the path to the folder containing the files in the
|
| 66 |
+
downloaded .tar
|
| 67 |
+
citation: `string`, citation for the data set
|
| 68 |
+
url: `string`, url for information about the data set
|
| 69 |
+
**kwargs: keyword arguments forwarded to super.
|
| 70 |
+
"""
|
| 71 |
+
super(ArabicSpeechCorpusConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class ArabicSpeechCorpus(datasets.GeneratorBasedBuilder):
|
| 75 |
+
"""ArabicSpeechCorpus dataset."""
|
| 76 |
+
|
| 77 |
+
BUILDER_CONFIGS = [
|
| 78 |
+
ArabicSpeechCorpusConfig(name="clean", description="'Clean' speech."),
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
def _info(self):
|
| 82 |
+
return datasets.DatasetInfo(
|
| 83 |
+
description=_DESCRIPTION,
|
| 84 |
+
features=datasets.Features(
|
| 85 |
+
{
|
| 86 |
+
"file": datasets.Value("string"),
|
| 87 |
+
"text": datasets.Value("string"),
|
| 88 |
+
"audio": datasets.Audio(sampling_rate=48_000),
|
| 89 |
+
"phonetic": datasets.Value("string"),
|
| 90 |
+
"orthographic": datasets.Value("string"),
|
| 91 |
+
}
|
| 92 |
+
),
|
| 93 |
+
supervised_keys=("file", "text"),
|
| 94 |
+
homepage=_URL,
|
| 95 |
+
citation=_CITATION,
|
| 96 |
+
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
def _split_generators(self, dl_manager):
|
| 100 |
+
archive_path = dl_manager.download_and_extract(_URL)
|
| 101 |
+
archive_path = os.path.join(archive_path, "arabic-speech-corpus")
|
| 102 |
+
return [
|
| 103 |
+
datasets.SplitGenerator(name="train", gen_kwargs={"archive_path": archive_path}),
|
| 104 |
+
datasets.SplitGenerator(name="test", gen_kwargs={"archive_path": os.path.join(archive_path, "test set")}),
|
| 105 |
+
]
|
| 106 |
+
|
| 107 |
+
def _generate_examples(self, archive_path):
|
| 108 |
+
"""Generate examples from a Librispeech archive_path."""
|
| 109 |
+
lab_dir = os.path.join(archive_path, "lab")
|
| 110 |
+
wav_dir = os.path.join(archive_path, "wav")
|
| 111 |
+
if "test set" in archive_path:
|
| 112 |
+
phonetic_path = os.path.join(archive_path, "phonetic-transcript.txt")
|
| 113 |
+
else:
|
| 114 |
+
phonetic_path = os.path.join(archive_path, "phonetic-transcipt.txt")
|
| 115 |
+
|
| 116 |
+
orthographic_path = os.path.join(archive_path, "orthographic-transcript.txt")
|
| 117 |
+
|
| 118 |
+
phonetics = {}
|
| 119 |
+
orthographics = {}
|
| 120 |
+
|
| 121 |
+
with open(phonetic_path, "r", encoding="utf-8") as f:
|
| 122 |
+
for line in f:
|
| 123 |
+
wav_file, phonetic = line.split('"')[1::2]
|
| 124 |
+
phonetics[wav_file] = phonetic
|
| 125 |
+
|
| 126 |
+
with open(orthographic_path, "r", encoding="utf-8") as f:
|
| 127 |
+
for line in f:
|
| 128 |
+
wav_file, orthographic = line.split('"')[1::2]
|
| 129 |
+
orthographics[wav_file] = orthographic
|
| 130 |
+
|
| 131 |
+
for _id, lab_name in enumerate(sorted(os.listdir(lab_dir))):
|
| 132 |
+
lab_path = os.path.join(lab_dir, lab_name)
|
| 133 |
+
lab_text = open(lab_path, "r", encoding="utf-8").read()
|
| 134 |
+
|
| 135 |
+
wav_name = lab_name[:-4] + ".wav"
|
| 136 |
+
wav_path = os.path.join(wav_dir, wav_name)
|
| 137 |
+
|
| 138 |
+
example = {
|
| 139 |
+
"file": wav_path,
|
| 140 |
+
"audio": wav_path,
|
| 141 |
+
"text": lab_text,
|
| 142 |
+
"phonetic": phonetics[wav_name],
|
| 143 |
+
"orthographic": orthographics[wav_name],
|
| 144 |
+
}
|
| 145 |
+
yield str(_id), example
|
clean/test-00000-of-00001.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:bd5ea889532615c4ca9c63b5b83fc3bacb94e9fa156c26f5963b8da2c8e87768
|
| 3 |
-
size 90899095
|
|
|
|
|
|
|
|
|
|
|
|
clean/train-00000-of-00004.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:9c3f2931ab19224daf55126c1cf96ff068f3ad442d760c1f5db99805d5a290be
|
| 3 |
-
size 398895011
|
|
|
|
|
|
|
|
|
|
|
|
clean/train-00001-of-00004.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d02e7e7d080082d1d96929b83e19b924d7c10c8b59a39f190c373245559ea36d
|
| 3 |
-
size 322764456
|
|
|
|
|
|
|
|
|
|
|
|
clean/train-00002-of-00004.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:8ea3385f7d8496bf1e77d9b1a2696fb2bb3769e1ffa060e43fa4fc6c5e25cf06
|
| 3 |
-
size 291793854
|
|
|
|
|
|
|
|
|
|
|
|
clean/train-00003-of-00004.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:91bbec3487d3ba745113c5869be40a6008ef815b9681fe683cf7ab46dd06efcf
|
| 3 |
-
size 243290957
|
|
|
|
|
|
|
|
|
|
|
|