JP-SystemsX
commited on
Commit
·
e26c06b
1
Parent(s):
7af7df3
Clean Up + Minor Error Handling
Browse files- .gitignore +1 -0
- super_eurlex.py +19 -37
.gitignore
CHANGED
|
@@ -4,3 +4,4 @@ requirements.txt
|
|
| 4 |
parquet_converter.py
|
| 5 |
text_data3/
|
| 6 |
meta_data3/
|
|
|
|
|
|
| 4 |
parquet_converter.py
|
| 5 |
text_data3/
|
| 6 |
meta_data3/
|
| 7 |
+
*.pyc
|
super_eurlex.py
CHANGED
|
@@ -48,35 +48,15 @@ _URLS = {
|
|
| 48 |
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
| 49 |
}
|
| 50 |
AVAILABLE_LANGUAGES=['DE']#, 'EN'
|
| 51 |
-
SECTORS=['0', '1', '2', '3', '4', '5', '6', '8', '9', 'C', 'E']
|
| 52 |
|
| 53 |
# Features to override the standard most Features were scrapped as a sequence
|
| 54 |
# of strings with only the following exceptions
|
| 55 |
FEATURES = {
|
| 56 |
'celex_id': datasets.Value("string"),
|
| 57 |
-
'current_consolidated_version': datasets.Sequence(datasets.Value("string")),
|
| 58 |
-
'customs_duties_authorisation_to_defer_application_of_cct': datasets.Sequence(datasets.Value("string")),
|
| 59 |
-
'customs_duties_community_tariff_quotas': datasets.Sequence(datasets.Value("string")),
|
| 60 |
-
'customs_duties_suspensions': datasets.Sequence(datasets.Value("string")),
|
| 61 |
-
'directory_code': datasets.Sequence(datasets.Value("string")),
|
| 62 |
-
'eurovoc': datasets.Sequence(datasets.Value("string")),
|
| 63 |
-
'form': datasets.Sequence(datasets.Value("string")),
|
| 64 |
-
'harmonisation_of_customs_law_community_transit': datasets.Sequence(datasets.Value("string")),
|
| 65 |
-
'harmonisation_of_customs_law_customs_territory': datasets.Sequence(datasets.Value("string")),
|
| 66 |
-
'harmonisation_of_customs_law_origin_of_goods': datasets.Sequence(datasets.Value("string")),
|
| 67 |
-
'harmonisation_of_customs_law_value_for_customs_purposes': datasets.Sequence(datasets.Value("string")),
|
| 68 |
-
'harmonisation_of_customs_law_various': datasets.Sequence(datasets.Value("string")),
|
| 69 |
-
'subject_matter': datasets.Sequence(datasets.Value("string")),
|
| 70 |
'text_cleaned': datasets.Value("string"),
|
| 71 |
'text_html_cleaned': datasets.Value("string"),
|
| 72 |
'text_html_raw': datasets.Value("string"),
|
| 73 |
-
'02.40.10.20_customs_union_and_free_movement_of_goods_/_specific_customs_rules_/_movement_of_goods_/_extra-community_trade_efta_agreements':datasets.Sequence(datasets.Value("string")),
|
| 74 |
-
'13.20.40.00_industrial_policy_and_internal_market_/_industrial_policy_sectoral_operations_/_textiles':datasets.Sequence(datasets.Value("string")),
|
| 75 |
-
'13.20.60.00_industrial_policy_and_internal_market_/_industrial_policy_sectoral_operations_/_information_technology,_telecommunications_and_data-processing':datasets.Sequence(datasets.Value("string")),
|
| 76 |
-
'13.10.30.00_industrial_policy_and_internal_market_/_industrial_policy_general,_programmes,_statistics_and_research_/_research_and_technological_development':datasets.Sequence(datasets.Value("string")),
|
| 77 |
-
'13.10.30.10_industrial_policy_and_internal_market_/_industrial_policy_general,_programmes,_statistics_and_research_/_research_and_technological_development_/_general_principles': datasets.Sequence(datasets.Value("string")),
|
| 78 |
-
'13.30.19.00_industrial_policy_and_internal_market_/_internal_market_approximation_of_laws_/_fertilisers': datasets.Sequence(datasets.Value("string")),
|
| 79 |
-
'13.10.30.20_industrial_policy_and_internal_market_/_industrial_policy_general,_programmes,_statistics_and_research_/_research_and_technological_development_/_research_sectors': datasets.Sequence(datasets.Value("string")),
|
| 80 |
}
|
| 81 |
FEATURES_IN_SECTOR={
|
| 82 |
'0':['celex_id', 'text_html_raw', 'text_html_cleaned', 'text_cleaned', 'form'],
|
|
@@ -310,18 +290,18 @@ FEATURES_IN_SECTOR={
|
|
| 310 |
AVAILABLE_FEATURES={sector: datasets.Features({feature:(FEATURES[feature] if feature in FEATURES else datasets.Sequence(datasets.Value("string"))) for feature in FEATURES_IN_SECTOR[sector]}) for sector in SECTORS}
|
| 311 |
|
| 312 |
SECTOR_DESCRIPTIONS={
|
| 313 |
-
'0':"",
|
| 314 |
-
'1':"",
|
| 315 |
-
'2':"",
|
| 316 |
-
'3':"",
|
| 317 |
-
'4':"",
|
| 318 |
-
'5':"",
|
| 319 |
-
'6':"",
|
| 320 |
-
'7':"",
|
| 321 |
-
'8':"",
|
| 322 |
-
'9':"",
|
| 323 |
-
'C':"",
|
| 324 |
-
'E':"",
|
| 325 |
}
|
| 326 |
|
| 327 |
|
|
@@ -376,7 +356,7 @@ class SuperEurlex(datasets.GeneratorBasedBuilder):
|
|
| 376 |
for lang in AVAILABLE_LANGUAGES for sect in SECTORS
|
| 377 |
]
|
| 378 |
|
| 379 |
-
DEFAULT_CONFIG_NAME = "3.DE" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 380 |
|
| 381 |
def _info(self):
|
| 382 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
|
@@ -407,7 +387,11 @@ class SuperEurlex(datasets.GeneratorBasedBuilder):
|
|
| 407 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 408 |
urls = {'text': self.config.text_data_url,
|
| 409 |
'meta': self.config.meta_data_url} #_URLS[self.config.name]
|
| 410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
return [
|
| 412 |
datasets.SplitGenerator(
|
| 413 |
name=datasets.Split.TRAIN,
|
|
@@ -437,8 +421,6 @@ class SuperEurlex(datasets.GeneratorBasedBuilder):
|
|
| 437 |
yield i, sample
|
| 438 |
|
| 439 |
|
| 440 |
-
|
| 441 |
-
print("Hello World")
|
| 442 |
if __name__ == '__main__':
|
| 443 |
import datasets as ds
|
| 444 |
import sys
|
|
|
|
| 48 |
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
| 49 |
}
|
| 50 |
AVAILABLE_LANGUAGES=['DE']#, 'EN'
|
| 51 |
+
SECTORS=['0', '1', '2', '3', '4', '5', '6', '8', '9', 'C', 'E']#'7',
|
| 52 |
|
| 53 |
# Features to override the standard most Features were scrapped as a sequence
|
| 54 |
# of strings with only the following exceptions
|
| 55 |
FEATURES = {
|
| 56 |
'celex_id': datasets.Value("string"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
'text_cleaned': datasets.Value("string"),
|
| 58 |
'text_html_cleaned': datasets.Value("string"),
|
| 59 |
'text_html_raw': datasets.Value("string"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
}
|
| 61 |
FEATURES_IN_SECTOR={
|
| 62 |
'0':['celex_id', 'text_html_raw', 'text_html_cleaned', 'text_cleaned', 'form'],
|
|
|
|
| 290 |
AVAILABLE_FEATURES={sector: datasets.Features({feature:(FEATURES[feature] if feature in FEATURES else datasets.Sequence(datasets.Value("string"))) for feature in FEATURES_IN_SECTOR[sector]}) for sector in SECTORS}
|
| 291 |
|
| 292 |
SECTOR_DESCRIPTIONS={
|
| 293 |
+
'0':"Consolidated acts ",
|
| 294 |
+
'1':"Treaties",
|
| 295 |
+
'2':"International agreements",
|
| 296 |
+
'3':"Legislation",
|
| 297 |
+
'4':"Complementary legislation",
|
| 298 |
+
'5':"Preparatory acts and working documents",
|
| 299 |
+
'6':"Case-law",
|
| 300 |
+
'7':"National transposition measures",
|
| 301 |
+
'8':"References to national case-law concerning EU law",
|
| 302 |
+
'9':"Parliamentary questions",
|
| 303 |
+
'C':"Other documents published in the Official Journal C series",
|
| 304 |
+
'E':"EFTA documents",
|
| 305 |
}
|
| 306 |
|
| 307 |
|
|
|
|
| 356 |
for lang in AVAILABLE_LANGUAGES for sect in SECTORS
|
| 357 |
]
|
| 358 |
|
| 359 |
+
#DEFAULT_CONFIG_NAME = "3.DE" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 360 |
|
| 361 |
def _info(self):
|
| 362 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
|
|
|
| 387 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 388 |
urls = {'text': self.config.text_data_url,
|
| 389 |
'meta': self.config.meta_data_url} #_URLS[self.config.name]
|
| 390 |
+
try:
|
| 391 |
+
data_dir = dl_manager.download_and_extract(urls)
|
| 392 |
+
except FileNotFoundError:
|
| 393 |
+
raise Exception("""The demanded Files weren't found.
|
| 394 |
+
It could be that the demanded sector isn't yet available in your language of choice""")
|
| 395 |
return [
|
| 396 |
datasets.SplitGenerator(
|
| 397 |
name=datasets.Split.TRAIN,
|
|
|
|
| 421 |
yield i, sample
|
| 422 |
|
| 423 |
|
|
|
|
|
|
|
| 424 |
if __name__ == '__main__':
|
| 425 |
import datasets as ds
|
| 426 |
import sys
|