Datasets:
File size: 5,475 Bytes
afff655 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
---
pretty_name: SEA Abstractive Summarization
license:
- cc-by-nc-sa-4.0
task_categories:
- text-generation
language:
- id
- ta
- th
- vi
dataset_info:
features:
- name: id
dtype: string
- name: label
dtype: string
- name: prompts
list:
- name: text
dtype: string
- name: prompt_templates
sequence: string
- name: metadata
struct:
- name: language
dtype: string
- name: url
dtype: string
- name: title
dtype: string
splits:
- name: id
num_bytes: 322112
num_examples: 100
num_tokens_gpt_4o: 61628
num_tokens_gemma_2: 55485
num_tokens_llama_3: 77016
- name: id_fewshot
num_bytes: 5963
num_examples: 5
num_tokens_gpt_4o: 1124
num_tokens_gemma_2: 1050
num_tokens_llama_3: 1430
- name: ta
num_bytes: 1075514
num_examples: 100
num_tokens_gpt_4o: 114275
num_tokens_gemma_2: 156476
num_tokens_llama_3: 457559
- name: ta_fewshot
num_bytes: 10198
num_examples: 5
num_tokens_gpt_4o: 964
num_tokens_gemma_2: 1339
num_tokens_llama_3: 3905
- name: th
num_bytes: 1201794
num_examples: 100
num_tokens_gpt_4o: 155203
num_tokens_gemma_2: 151988
num_tokens_llama_3: 176985
- name: th_fewshot
num_bytes: 8735
num_examples: 5
num_tokens_gpt_4o: 925
num_tokens_gemma_2: 869
num_tokens_llama_3: 1062
- name: vi
num_bytes: 395697
num_examples: 100
num_tokens_gpt_4o: 86305
num_tokens_gemma_2: 78285
num_tokens_llama_3: 82269
- name: vi_fewshot
num_bytes: 9092
num_examples: 5
num_tokens_gpt_4o: 2396
num_tokens_gemma_2: 2170
num_tokens_llama_3: 2282
download_size: 1258846
dataset_size: 3029105
total_tokens_gpt_4o: 422820
total_tokens_gemma_2: 447662
total_tokens_llama_3: 802508
configs:
- config_name: default
data_files:
- split: id
path: data/id-*
- split: id_fewshot
path: data/id_fewshot-*
- split: ta
path: data/ta-*
- split: ta_fewshot
path: data/ta_fewshot-*
- split: th
path: data/th-*
- split: th_fewshot
path: data/th_fewshot-*
- split: vi
path: data/vi-*
- split: vi_fewshot
path: data/vi_fewshot-*
size_categories:
- n<1K
---
# SEA Abstractive Summarization
SEA Abstractive Summarization evaluates a model's ability to read a document, identify the key points within, and summarize them into a coherent and fluent text while paraphrasing the document. It is sampled from [XL-Sum](https://aclanthology.org/2021.findings-acl.413/) for Indonesian, Tamil, Thai, and Vietnamese.
### Supported Tasks and Leaderboards
SEA Abstractive Summarization is designed for evaluating chat or instruction-tuned large language models (LLMs). It is part of the [SEA-HELM](https://leaderboard.sea-lion.ai/) leaderboard from [AI Singapore](https://aisingapore.org/).
### Languages
- Indonesian (id)
- Tamil (ta)
- Thai (th)
- Vietnamese (vi)
### Dataset Details
SEA Abstractive Summarization is split by language, with additional splits containing fewshot examples. Below are the statistics for this dataset. The number of tokens only refer to the strings of text found within the `prompts` column.
| Split | # of examples | # of GPT-4o tokens | # of Gemma 2 tokens | # of Llama 3 tokens |
|-|:-|:-|:-|:-|
| id | 100 | 61628 | 55485 | 77016 |
| ta | 100 | 114275 | 156476 | 457559 |
| th | 100 | 155203 | 151988 | 176985 |
| vi | 100 | 86305 | 78285 | 82269 |
| id_fewshot | 5 | 1124 | 1050 | 1430 |
| ta_fewshot | 5 | 964 | 1339 | 3905 |
| th_fewshot | 5 | 925 | 869 | 1062 |
| vi_fewshot | 5 | 2396 | 2170 | 2282 |
| **total** | 420 | 422820 | 447662 | 802508 |
### Data Sources
| Data Source | License | Language/s | Split/s
|-|:-|:-| :-|
| [XL-Sum](https://huggingface.co/datasets/csebuetnlp/xlsum) | [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) | Indonesian, Tamil, Thai, Vietnamese | id, id_fewshot, ta, ta_fewshot, th, th_fewshot, vi, vi_fewshot
### License
For the license/s of the dataset/s, please refer to the data sources table above.
We endeavor to ensure data used is permissible and have chosen datasets from creators who have processes to exclude copyrighted or disputed data.
### References
```bibtex
@inproceedings{hasan-etal-2021-xl,
title = "{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages",
author = "Hasan, Tahmid and
Bhattacharjee, Abhik and
Islam, Md. Saiful and
Mubasshir, Kazi and
Li, Yuan-Fang and
Kang, Yong-Bin and
Rahman, M. Sohel and
Shahriyar, Rifat",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.413",
pages = "4693--4703",
}
@misc{leong2023bhasaholisticsoutheastasian,
title={BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models},
author={Wei Qi Leong and Jian Gang Ngui and Yosephine Susanto and Hamsawardhini Rengarajan and Kengatharaiyer Sarveswaran and William Chandra Tjhi},
year={2023},
eprint={2309.06085},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2309.06085},
}
``` |