--- license: mit task_categories: - time-series-forecasting - robotics - video-classification - feature-extraction tags: - blender - camera-tracking - vfx - optical-flow - computer-vision pretty_name: AutoSolve Telemetry size_categories: - n<1K --- # ๐Ÿงช AutoSolve Research Dataset (Beta) > **Community-driven telemetry for 3D Camera Tracking** This dataset collects anonymized tracking sessions from the [AutoSolve Blender Addon](https://github.com/UsamaSQ/AutoSolve). It trains an adaptive learning system that predicts optimal tracking settings (Search Size, Pattern Size, Motion Models) based on footage characteristics. --- ## ๐Ÿค How to Contribute Your data makes AutoSolve smarter for everyone. ### Step 1: Export from Blender 1. Open Blender and go to the **Movie Clip Editor**. 2. In the **AutoSolve** panel, find the **Research Beta** sub-panel. 3. Click **Export** (exports as `autosolve_telemetry_YYYYMMDD_HHMMSS.zip`). ### Step 2: Upload Here 1. Click the **"Files and versions"** tab at the top of this page. 2. Click **"Add file"** โ†’ **"Upload file"**. (You need to be Logged-In to HuggingFace to upload) 3. Drag and drop your `.zip` file. 4. _(Optional)_ Add a brief description: e.g., "10 drone shots, 4K 30fps, outdoor" 5. Click **"Commit changes"** (creates a Pull Request). **Note:** Contributions are reviewed before merging to ensure data quality and privacy compliance. ### Step 3: Join the Community Have questions or want to discuss your contributions? **Discord:** [Join our community](https://discord.gg/qUvrXHP9PU) **Documentation:** [Full contribution guide](https://github.com/UsamaSQ/AutoSolve/blob/main/CONTRIBUTING_DATA.md) --- ## ๐Ÿ“Š Dataset Structure Each ZIP file contains anonymized numerical telemetry: ### 1. Session Records (`/sessions/*.json`) Individual tracking attempts with complete metrics. **What's Included:** - **Footage Metadata:** Resolution, FPS, Frame Count - **Settings Used:** Pattern Size, Search Size, Correlation, Motion Model - **Results:** Solve Error, Bundle Count, Success/Failure - **Camera Intrinsics:** Focal Length, Sensor Size, Distortion Coefficients (K1, K2, K3) - **Motion Analysis:** Motion Class (LOW/MEDIUM/HIGH), Parallax Score, Velocity Statistics - **Feature Density:** Count of trackable features per 9-grid region (from Blender's detect_features) - **Time Series:** Per-frame active tracks, dropout rates, velocity profiles - **Track Lifecycle:** Per-marker survival, jitter, reprojection error - **Track Healing:** Anchor tracks, healing attempts, gap interpolation results - **Track Averaging:** Merged segment counts **Example Session:** ```json { "schema_version": 1, "timestamp": "2025-12-12T10:30:00", "resolution": [1920, 1080], "fps": 30, "frame_count": 240, "settings": { "pattern_size": 17, "search_size": 91, "correlation": 0.68, "motion_model": "LocRot" }, "success": true, "solve_error": 0.42, "bundle_count": 45, "motion_class": "MEDIUM", "visual_features": { "feature_density": { "center": 12, "top-left": 8, "top-right": 6 }, "motion_magnitude": 0.015, "edge_density": { "center": 0.85, "top-left": 0.42 } } "healing_stats": { "candidates_found": 5, "heals_attempted": 3, "heals_successful": 2, "avg_gap_frames": 15.0 } } ``` ### 2. Behavior Records (`/behavior/*.json`) **THE KEY LEARNING DATA** - How experts improve tracking. **What's Captured:** - **Track Additions:** ๐Ÿ”‘ Which markers users manually add (region, position, quality) - **Track Deletions:** Which markers users remove (region, lifespan, error, reason) - **Settings Adjustments:** Which parameters users changed (before/after values) - **Re-solve Results:** Whether user changes improved solve error - **Marker Refinements:** Manual position adjustments - **Net Track Change:** How many tracks were added vs removed - **Region Reinforcement:** Which regions pros manually populated **Purpose:** Teaches the AI how experts **improve** tracking, not just cleanup. **Example Behavior:** ```json { "schema_version": 1, "clip_fingerprint": "a7f3c89b2e71d6f0", "contributor_id": "x7f2k9a1", "iteration": 3, "track_additions": [ { "track_name": "Track.042", "region": "center", "initial_frame": 45, "position": [0.52, 0.48], "lifespan_achieved": 145, "had_bundle": true, "reprojection_error": 0.32 } ], "track_deletions": [ { "track_name": "Track.003", "region": "top-right", "lifespan": 12, "had_bundle": false, "reprojection_error": 2.8, "inferred_reason": "high_error" } ], "net_track_change": 3, "region_additions": { "center": 2, "bottom-center": 1 }, "re_solve": { "attempted": true, "error_before": 0.87, "error_after": 0.42, "improvement": 0.45, "improved": true } } ``` ### 3. Model State (`model.json`) The user's local statistical model state showing learned patterns. --- ## ๐Ÿ“‹ What Gets Collected Each contribution includes: โœ… **Numerical Metrics** - Tracking settings that worked (or failed) - Motion analysis (velocity, direction, parallax) - Per-track survival and quality metrics - Feature density counts per region โœ… **Camera Characteristics** - Focal length and sensor size - Lens distortion coefficients - Principal point coordinates โœ… **Time Series Data** - Per-frame active track counts - Track dropout rates - Velocity profiles over time --- ## ๐Ÿ”’ Data Privacy & Ethics We take privacy seriously. This dataset contains **numerical telemetry only**. โŒ **NOT Collected:** - Images, video frames, or pixel data - File paths or project names - User identifiers (IPs, usernames, emails) - System information โœ… **Only Collected:** - Resolution, FPS, frame count - Mathematical motion vectors - Tracking settings and success metrics - Feature density counts (not actual features) _For complete schema documentation, see [TRAINING_DATA.md](https://github.com/UsamaSQ/AutoSolve/blob/main/TRAINING_DATA.md)_ --- ## ๐Ÿ›  Usage for Researchers This data is ideal for training models related to: ### Hyperparameter Optimization Predicts optimal tracking settings (Search Size, Pattern Size, Correlation, Motion Models) based on footage characteristics and motion analysis. ### Outlier Detection Identifying "bad" 2D tracks before camera solve using lifecycle and jitter patterns. ### Motion Classification Classifying camera motion types (Drone, Handheld, Tripod) from sparse optical flow and feature density. ### Temporal Modeling Predicting track dropout using RNN/LSTM trained on per-frame time series data. --- ## ๐Ÿ’ป Loading the Dataset ### Python Example ```python import json import zipfile from pathlib import Path from collections import defaultdict # Load a contributed ZIP zip_path = Path('autosolve_telemetry_20251212_103045.zip') with zipfile.ZipFile(zip_path, 'r') as zf: # Read manifest manifest = json.loads(zf.read('manifest.json')) print(f"Export Version: {manifest['export_version']}") print(f"Sessions: {manifest['session_count']}") print(f"Behaviors: {manifest['behavior_count']}") # Load all sessions sessions = [] for filename in zf.namelist(): if filename.startswith('sessions/') and filename.endswith('.json'): session_data = json.loads(zf.read(filename)) sessions.append(session_data) # Analyze by footage class by_class = defaultdict(list) for s in sessions: width = s['resolution'][0] fps = s['fps'] motion = s.get('motion_class', 'MEDIUM') cls = f"{'HD' if width >= 1920 else 'SD'}_{int(fps)}fps_{motion}" by_class[cls].append(s['success']) # Success rates per class print("\nSuccess Rates by Footage Class:") for cls, results in sorted(by_class.items()): rate = sum(results) / len(results) print(f" {cls}: {rate:.1%} ({len(results)} sessions)") ``` ### Feature Extraction Example ```python # Extract feature density patterns feature_densities = [] for session in sessions: vf = session.get('visual_features', {}) density = vf.get('feature_density', {}) if density: feature_densities.append({ 'motion_class': session.get('motion_class'), 'center': density.get('center', 0), 'edges': sum([ density.get('top-left', 0), density.get('top-right', 0), density.get('bottom-left', 0), density.get('bottom-right', 0) ]) / 4, 'success': session['success'] }) # Analyze: Do edge-heavy clips succeed more? import pandas as pd df = pd.DataFrame(feature_densities) print(df.groupby('success')['edges'].mean()) ``` --- ## ๐Ÿ“ˆ Dataset Statistics **Current Status:** Beta Collection Phase **Target:** - 100+ unique footage types - 500+ successful tracking sessions - Diverse motion classes and resolutions **Contribute** to help us reach production-ready dataset size! ๐Ÿš€ --- ## ๐Ÿ“– Citation If you use this dataset in your research, please cite: ```bibtex @misc{autosolve-telemetry-2025, title={AutoSolve Telemetry: Community-Driven Camera Tracking Dataset}, author={Bin Shahid, Usama}, year={2025}, publisher={HuggingFace}, url={https://huggingface.co/datasets/UsamaSQ/autosolve-telemetry} } ``` --- ## ๐Ÿค Community & Support **Repository:** [GitHub.com/UsamaSQ/AutoSolve](https://github.com/UsamaSQ/AutoSolve) **Discord:** [Join our community](https://discord.gg/qUvrXHP9PU) **Maintainer:** Usama Bin Shahid Your contributions make AutoSolve better for everyone! ๐Ÿ™