File size: 4,189 Bytes
d1d3d9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c21f0
3ecb034
 
f735a48
 
3ecb034
 
 
 
f735a48
 
 
 
 
3ecb034
f735a48
 
3ecb034
 
f735a48
3ecb034
f735a48
 
3ecb034
 
 
 
 
d1d3d9d
 
c0a633b
d1d3d9d
c7a4cad
 
 
 
 
 
 
 
252e9d2
c7a4cad
92c188d
c7a4cad
 
 
 
 
 
32085b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a4cad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1d3d9d
482124a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c7bded
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: cc-by-4.0
language:
- fa
task_categories:
- text-to-speech
- automatic-speech-recognition
- audio-to-audio
- audio-classification
- text-to-audio
- voice-activity-detection
tags:
- TTS
- farsi
- yodas
- quality
pretty_name: YodaLingua
dataset_info:
  features:
  - name: __key__
    dtype: string
  - name: mp3
    dtype:
      audio:
        sampling_rate: 24000
  - name: text
    dtype: string
  - name: language
    dtype: string
  - name: speaker_id
    dtype: string
  - name: dnsmos
    dtype: float64
  splits:
  - name: train
    num_bytes: 680427539.778
    num_examples: 14586
  download_size: 636505858
  dataset_size: 680427539.778
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# YodaLingua-Farsi

**YodaLingua** is a high-quality speech dataset designed for training text-to-speech (TTS) systems, ASR models, and any application requiring clean, well-aligned audio–text pairs.  
This release contains the **Farsi** portion of the multilingual YodaLingua collection.

## 🧾 Dataset Overview

| Property | Value |
|---------|-------|
| **Total clips** | 14,586 audio–transcription pairs |
| **Total duration** | 44 hours |
| **Speakers** | 504 distinct speakers |
| **Audio format** | MP3 • mono • 24 kHz • 16-bit |
| **License** | Permissive — commercial use allowed |

All audio clips are noise-reduced, normalized, and matched with accurate transcriptions.

---

## Data Fields

Each entry in the dataset contains the following fields:

| Field | Description |
|------|------------|
| `__key__` | Unique identifier for each sample. |
| `audio` | Path to the audio file associated with the sample (MP3 format). |
| `text` | Ground-truth transcription of the audio segment. |
| `language` | Language code following ISO 639 standards. |
| `speaker_id` | Unique identifier assigned to each speaker. Multiple audio can share the same speaker ID. |
| `dnsmos` | DNSMOS P.835 Overall (OVRL) score estimating perceptual speech quality; higher values indicate cleaner and more intelligible audio. |

---

## 🌍 Multilingual Versions

Other languages are available in the YodaLingua multilingual collection:  
👉 https://huggingface.co/collections/Thomcles/yodalingua

---

We apply a multi-stage pipeline to ensure maximum data quality:

### **1. Standardization**
- Convert to WAV  
- Mono channel  
- Resample to **24 kHz**  
- **16-bit** sample width  
- Normalize to **–20 dBFS** (with volume correction between –3 and +3 dB)

### **2. Noise Reduction**
Advanced denoising applied to improve clarity and remove background artifacts.

### **3. Speaker Diarization**
Segment long recordings by speaker to improve diversity and ensure speaker-consistent utterances.

### **4. Voice Activity Detection (VAD)**
Merge consecutive VAD segments from the same speaker into clean utterances of **3–30 s**.

### **5. Transcription**
State-of-the-art ASR models produce accurate text transcripts.

### **6. Quality Filtering**
Clips are filtered using **DNSMOS P.835 OVRL**; only samples with a score **> 3.0** are retained.


## 📚 Loading the Dataset

```python
from datasets import load_dataset

ds = load_dataset("Thomcles/YodaLingua-Farsi")
```

## Phoneme distribution (as produced by the G2P model)

The following table shows the relative frequency of G2P-generated phoneme units.
These units include vowels, consonants, and G2P-specific markers (e.g., length ː, aspiration ʰ).

This is not intended as a phonological analysis of Farsi, but as an objective indicator of the phonetic diversity and coverage of the dataset for speech-generation tasks.

| Symbol | Frequency |
|--------|-----------|
| ː | 13.94% |
| æ | 10.49% |
| ʰ | 6.25% |
| i | 5.90% |
| ɒ | 5.85% |
| n | 4.95% |
| h | 4.77% |
| d | 4.38% |
| e | 4.25% |
| ɾ | 4.20% |
| m | 4.06% |
| t | 3.53% |
| ʔ | 3.09% |
| b | 2.86% |
| v | 2.31% |
| k | 2.29% |
| u | 2.14% |
| o | 2.10% |
| s | 2.10% |
| ʃ | 1.82% |
| j | 1.78% |
| l | 1.73% |
| z | 1.32% |
| ɡ | 0.78% |
| x | 0.77% |
| f | 0.68% |
| q | 0.64% |
| ʒ | 0.60% |
| p | 0.42% |

---

## Contact

e-mail : [[email protected]]([email protected])