Datasets:
File size: 4,189 Bytes
d1d3d9d b2c21f0 3ecb034 f735a48 3ecb034 f735a48 3ecb034 f735a48 3ecb034 f735a48 3ecb034 f735a48 3ecb034 d1d3d9d c0a633b d1d3d9d c7a4cad 252e9d2 c7a4cad 92c188d c7a4cad 32085b9 c7a4cad d1d3d9d 482124a 5c7bded |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
license: cc-by-4.0
language:
- fa
task_categories:
- text-to-speech
- automatic-speech-recognition
- audio-to-audio
- audio-classification
- text-to-audio
- voice-activity-detection
tags:
- TTS
- farsi
- yodas
- quality
pretty_name: YodaLingua
dataset_info:
features:
- name: __key__
dtype: string
- name: mp3
dtype:
audio:
sampling_rate: 24000
- name: text
dtype: string
- name: language
dtype: string
- name: speaker_id
dtype: string
- name: dnsmos
dtype: float64
splits:
- name: train
num_bytes: 680427539.778
num_examples: 14586
download_size: 636505858
dataset_size: 680427539.778
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# YodaLingua-Farsi
**YodaLingua** is a high-quality speech dataset designed for training text-to-speech (TTS) systems, ASR models, and any application requiring clean, well-aligned audio–text pairs.
This release contains the **Farsi** portion of the multilingual YodaLingua collection.
## 🧾 Dataset Overview
| Property | Value |
|---------|-------|
| **Total clips** | 14,586 audio–transcription pairs |
| **Total duration** | 44 hours |
| **Speakers** | 504 distinct speakers |
| **Audio format** | MP3 • mono • 24 kHz • 16-bit |
| **License** | Permissive — commercial use allowed |
All audio clips are noise-reduced, normalized, and matched with accurate transcriptions.
---
## Data Fields
Each entry in the dataset contains the following fields:
| Field | Description |
|------|------------|
| `__key__` | Unique identifier for each sample. |
| `audio` | Path to the audio file associated with the sample (MP3 format). |
| `text` | Ground-truth transcription of the audio segment. |
| `language` | Language code following ISO 639 standards. |
| `speaker_id` | Unique identifier assigned to each speaker. Multiple audio can share the same speaker ID. |
| `dnsmos` | DNSMOS P.835 Overall (OVRL) score estimating perceptual speech quality; higher values indicate cleaner and more intelligible audio. |
---
## 🌍 Multilingual Versions
Other languages are available in the YodaLingua multilingual collection:
👉 https://huggingface.co/collections/Thomcles/yodalingua
---
We apply a multi-stage pipeline to ensure maximum data quality:
### **1. Standardization**
- Convert to WAV
- Mono channel
- Resample to **24 kHz**
- **16-bit** sample width
- Normalize to **–20 dBFS** (with volume correction between –3 and +3 dB)
### **2. Noise Reduction**
Advanced denoising applied to improve clarity and remove background artifacts.
### **3. Speaker Diarization**
Segment long recordings by speaker to improve diversity and ensure speaker-consistent utterances.
### **4. Voice Activity Detection (VAD)**
Merge consecutive VAD segments from the same speaker into clean utterances of **3–30 s**.
### **5. Transcription**
State-of-the-art ASR models produce accurate text transcripts.
### **6. Quality Filtering**
Clips are filtered using **DNSMOS P.835 OVRL**; only samples with a score **> 3.0** are retained.
## 📚 Loading the Dataset
```python
from datasets import load_dataset
ds = load_dataset("Thomcles/YodaLingua-Farsi")
```
## Phoneme distribution (as produced by the G2P model)
The following table shows the relative frequency of G2P-generated phoneme units.
These units include vowels, consonants, and G2P-specific markers (e.g., length ː, aspiration ʰ).
This is not intended as a phonological analysis of Farsi, but as an objective indicator of the phonetic diversity and coverage of the dataset for speech-generation tasks.
| Symbol | Frequency |
|--------|-----------|
| ː | 13.94% |
| æ | 10.49% |
| ʰ | 6.25% |
| i | 5.90% |
| ɒ | 5.85% |
| n | 4.95% |
| h | 4.77% |
| d | 4.38% |
| e | 4.25% |
| ɾ | 4.20% |
| m | 4.06% |
| t | 3.53% |
| ʔ | 3.09% |
| b | 2.86% |
| v | 2.31% |
| k | 2.29% |
| u | 2.14% |
| o | 2.10% |
| s | 2.10% |
| ʃ | 1.82% |
| j | 1.78% |
| l | 1.73% |
| z | 1.32% |
| ɡ | 0.78% |
| x | 0.77% |
| f | 0.68% |
| q | 0.64% |
| ʒ | 0.60% |
| p | 0.42% |
---
## Contact
e-mail : [[email protected]]([email protected])
|