Datasets:
Tasks:
Object Detection
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
License:
Upload 4 files
Browse files- Final_classes.txt +100 -0
- Initial_data_correction_n_augmentation.ipynb +699 -0
- automating_annotation.ipynb +0 -0
- correction_for_augmented data.ipynb +567 -0
Final_classes.txt
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
all_purpose_flour
|
| 2 |
+
almonds
|
| 3 |
+
apple
|
| 4 |
+
apricot
|
| 5 |
+
asparagus
|
| 6 |
+
avocado
|
| 7 |
+
bacon
|
| 8 |
+
banana
|
| 9 |
+
barley
|
| 10 |
+
basil
|
| 11 |
+
basmati_rice
|
| 12 |
+
beans
|
| 13 |
+
beef
|
| 14 |
+
beets
|
| 15 |
+
bell_pepper
|
| 16 |
+
berries
|
| 17 |
+
biscuits
|
| 18 |
+
blackberries
|
| 19 |
+
black_pepper
|
| 20 |
+
blueberries
|
| 21 |
+
bread
|
| 22 |
+
bread_crumbs
|
| 23 |
+
bread_flour
|
| 24 |
+
broccoli
|
| 25 |
+
brownie_mix
|
| 26 |
+
brown_rice
|
| 27 |
+
butter
|
| 28 |
+
cabbage
|
| 29 |
+
cake
|
| 30 |
+
cardamom
|
| 31 |
+
carrot
|
| 32 |
+
cashews
|
| 33 |
+
cauliflower
|
| 34 |
+
celery
|
| 35 |
+
cereal
|
| 36 |
+
cheese
|
| 37 |
+
cherries
|
| 38 |
+
chicken
|
| 39 |
+
chickpeas
|
| 40 |
+
chocolate
|
| 41 |
+
chocolate_chips
|
| 42 |
+
chocolate_syrup
|
| 43 |
+
cilantro
|
| 44 |
+
cinnamon
|
| 45 |
+
clove
|
| 46 |
+
cocoa_powder
|
| 47 |
+
coconut
|
| 48 |
+
cookies
|
| 49 |
+
corn
|
| 50 |
+
cucumber
|
| 51 |
+
dates
|
| 52 |
+
eggplant
|
| 53 |
+
eggs
|
| 54 |
+
fish
|
| 55 |
+
garlic
|
| 56 |
+
ginger
|
| 57 |
+
grapes
|
| 58 |
+
honey
|
| 59 |
+
jalapeno
|
| 60 |
+
kidney_beans
|
| 61 |
+
lemon
|
| 62 |
+
mango
|
| 63 |
+
marshmallows
|
| 64 |
+
milk
|
| 65 |
+
mint
|
| 66 |
+
muffins
|
| 67 |
+
mushroom
|
| 68 |
+
noodles
|
| 69 |
+
nuts
|
| 70 |
+
oats
|
| 71 |
+
okra
|
| 72 |
+
olive
|
| 73 |
+
onion
|
| 74 |
+
orange
|
| 75 |
+
oreo_cookies
|
| 76 |
+
pasta
|
| 77 |
+
pear
|
| 78 |
+
pepper
|
| 79 |
+
pineapple
|
| 80 |
+
pistachios
|
| 81 |
+
pork
|
| 82 |
+
potato
|
| 83 |
+
pumpkin
|
| 84 |
+
radishes
|
| 85 |
+
raisins
|
| 86 |
+
red_chilies
|
| 87 |
+
rice
|
| 88 |
+
rosemary
|
| 89 |
+
salmon
|
| 90 |
+
salt
|
| 91 |
+
shrimp
|
| 92 |
+
spinach
|
| 93 |
+
strawberries
|
| 94 |
+
sugar
|
| 95 |
+
sweet_potato
|
| 96 |
+
tomato
|
| 97 |
+
vanilla_ice_cream
|
| 98 |
+
walnuts
|
| 99 |
+
watermelon
|
| 100 |
+
yogurt
|
Initial_data_correction_n_augmentation.ipynb
ADDED
|
@@ -0,0 +1,699 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Check for if class names in the txt file matches with the label dir "
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"### Rename to bring the consistency"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": 1,
|
| 20 |
+
"metadata": {},
|
| 21 |
+
"outputs": [
|
| 22 |
+
{
|
| 23 |
+
"name": "stdout",
|
| 24 |
+
"output_type": "stream",
|
| 25 |
+
"text": [
|
| 26 |
+
"Renamed 'all purpose flour' to 'all_purpose_flour'\n",
|
| 27 |
+
"Renamed 'basmati rice' to 'basmati_rice'\n",
|
| 28 |
+
"Renamed 'bell pepper' to 'bell_pepper'\n",
|
| 29 |
+
"Renamed 'black pepper' to 'black_pepper'\n",
|
| 30 |
+
"Renamed 'bread crumbs' to 'bread_crumbs'\n",
|
| 31 |
+
"Renamed 'bread flour' to 'bread_flour'\n",
|
| 32 |
+
"Renamed 'brown rice' to 'brown_rice'\n",
|
| 33 |
+
"Renamed 'brownie mix' to 'brownie_mix'\n",
|
| 34 |
+
"Renamed 'chocolate chips' to 'chocolate_chips'\n",
|
| 35 |
+
"Renamed 'chocolate syrup' to 'chocolate_syrup'\n",
|
| 36 |
+
"Renamed 'cocoa powder' to 'cocoa_powder'\n",
|
| 37 |
+
"Renamed 'kidney beans' to 'kidney_beans'\n",
|
| 38 |
+
"Renamed 'oreo cookies' to 'oreo_cookies'\n",
|
| 39 |
+
"Renamed 'red chilies' to 'red_chilies'\n",
|
| 40 |
+
"Renamed 'sweet potato' to 'sweet_potato'\n",
|
| 41 |
+
"Renamed 'vanilla ice cream' to 'vanilla_ice_cream'\n",
|
| 42 |
+
"Directory renaming completed.\n"
|
| 43 |
+
]
|
| 44 |
+
}
|
| 45 |
+
],
|
| 46 |
+
"source": [
|
| 47 |
+
"import os\n",
|
| 48 |
+
"\n",
|
| 49 |
+
"def rename_directories(dataset_directory):\n",
|
| 50 |
+
" for dirname in os.listdir(dataset_directory):\n",
|
| 51 |
+
" current_dir_path = os.path.join(dataset_directory, dirname)\n",
|
| 52 |
+
" if os.path.isdir(current_dir_path):\n",
|
| 53 |
+
" new_dirname = dirname.replace(' ', '_')\n",
|
| 54 |
+
" new_dir_path = os.path.join(dataset_directory, new_dirname)\n",
|
| 55 |
+
" if current_dir_path != new_dir_path: \n",
|
| 56 |
+
" os.rename(current_dir_path, new_dir_path)\n",
|
| 57 |
+
" print(f\"Renamed '{dirname}' to '{new_dirname}'\")\n",
|
| 58 |
+
"dataset_directory = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data'\n",
|
| 59 |
+
"rename_directories(dataset_directory)\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"print(\"Directory renaming completed.\")\n"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"execution_count": 2,
|
| 67 |
+
"metadata": {},
|
| 68 |
+
"outputs": [
|
| 69 |
+
{
|
| 70 |
+
"name": "stdout",
|
| 71 |
+
"output_type": "stream",
|
| 72 |
+
"text": [
|
| 73 |
+
"All classes in 'Final_classes.txt' have corresponding directories in the dataset.\n",
|
| 74 |
+
"No extra directories in the dataset that are not listed in 'Final_classes.txt'.\n"
|
| 75 |
+
]
|
| 76 |
+
}
|
| 77 |
+
],
|
| 78 |
+
"source": [
|
| 79 |
+
"\n",
|
| 80 |
+
"# dataset directory and class names file\n",
|
| 81 |
+
"dataset_dir = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data'\n",
|
| 82 |
+
"class_names_file = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\Final_classes.txt'\n",
|
| 83 |
+
"\n",
|
| 84 |
+
"# Load class names from file\n",
|
| 85 |
+
"with open(class_names_file, 'r') as f:\n",
|
| 86 |
+
" class_names = [line.strip().replace(' ', '_') for line in f]\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"# Get a list of actual directory names in the dataset\n",
|
| 89 |
+
"actual_dirs = [d for d in os.listdir(dataset_dir) if os.path.isdir(os.path.join(dataset_dir, d))]\n",
|
| 90 |
+
"\n",
|
| 91 |
+
"# Check for discrepancies\n",
|
| 92 |
+
"missing_dirs = set(class_names) - set(actual_dirs)\n",
|
| 93 |
+
"extra_dirs = set(actual_dirs) - set(class_names)\n",
|
| 94 |
+
"\n",
|
| 95 |
+
"if missing_dirs:\n",
|
| 96 |
+
" print(f\"Missing directories for classes in 'Final_classes.txt': {missing_dirs}\")\n",
|
| 97 |
+
"else:\n",
|
| 98 |
+
" print(\"All classes in 'Final_classes.txt' have corresponding directories in the dataset.\")\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"if extra_dirs:\n",
|
| 101 |
+
" print(f\"Extra directories in the dataset that are not listed in 'Final_classes.txt': {extra_dirs}\")\n",
|
| 102 |
+
"else:\n",
|
| 103 |
+
" print(\"No extra directories in the dataset that are not listed in 'Final_classes.txt'.\")\n"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "markdown",
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"source": [
|
| 110 |
+
"## Removing files other than jpg"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"cell_type": "code",
|
| 115 |
+
"execution_count": 17,
|
| 116 |
+
"metadata": {},
|
| 117 |
+
"outputs": [
|
| 118 |
+
{
|
| 119 |
+
"name": "stdout",
|
| 120 |
+
"output_type": "stream",
|
| 121 |
+
"text": [
|
| 122 |
+
"No non-JPG files found in the dataset.\n"
|
| 123 |
+
]
|
| 124 |
+
}
|
| 125 |
+
],
|
| 126 |
+
"source": [
|
| 127 |
+
"\n",
|
| 128 |
+
"def remove_non_jpg_images(dataset_dir):\n",
|
| 129 |
+
" removed_files = []\n",
|
| 130 |
+
" for root, dirs, files in os.walk(dataset_dir):\n",
|
| 131 |
+
" for file in files:\n",
|
| 132 |
+
" # Check if the file extension is not .jpg\n",
|
| 133 |
+
" if not file.lower().endswith('.jpg'):\n",
|
| 134 |
+
" file_path = os.path.join(root, file)\n",
|
| 135 |
+
" os.remove(file_path) # Remove the non-JPG file\n",
|
| 136 |
+
" removed_files.append(file_path)\n",
|
| 137 |
+
" return removed_files\n",
|
| 138 |
+
"\n",
|
| 139 |
+
"\n",
|
| 140 |
+
"dataset_dir = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data'\n",
|
| 141 |
+
"removed_files = remove_non_jpg_images(dataset_dir)\n",
|
| 142 |
+
"\n",
|
| 143 |
+
"if removed_files:\n",
|
| 144 |
+
" print(f\"Removed {len(removed_files)} non-JPG files:\")\n",
|
| 145 |
+
" for file in removed_files:\n",
|
| 146 |
+
" print(file)\n",
|
| 147 |
+
"else:\n",
|
| 148 |
+
" print(\"No non-JPG files found in the dataset.\")\n"
|
| 149 |
+
]
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"cell_type": "code",
|
| 153 |
+
"execution_count": 20,
|
| 154 |
+
"metadata": {},
|
| 155 |
+
"outputs": [
|
| 156 |
+
{
|
| 157 |
+
"name": "stdout",
|
| 158 |
+
"output_type": "stream",
|
| 159 |
+
"text": [
|
| 160 |
+
"all_purpose_flour: 50 images\n",
|
| 161 |
+
"almonds: 50 images\n",
|
| 162 |
+
"apple: 50 images\n",
|
| 163 |
+
"apricot: 50 images\n",
|
| 164 |
+
"asparagus: 50 images\n",
|
| 165 |
+
"avocado: 50 images\n",
|
| 166 |
+
"bacon: 50 images\n",
|
| 167 |
+
"banana: 50 images\n",
|
| 168 |
+
"barley: 50 images\n",
|
| 169 |
+
"basil: 50 images\n",
|
| 170 |
+
"basmati_rice: 50 images\n",
|
| 171 |
+
"beans: 50 images\n",
|
| 172 |
+
"beef: 50 images\n",
|
| 173 |
+
"beets: 50 images\n",
|
| 174 |
+
"bell_pepper: 50 images\n",
|
| 175 |
+
"berries: 50 images\n",
|
| 176 |
+
"biscuits: 50 images\n",
|
| 177 |
+
"blackberries: 50 images\n",
|
| 178 |
+
"black_pepper: 50 images\n",
|
| 179 |
+
"blueberries: 50 images\n",
|
| 180 |
+
"bread: 50 images\n",
|
| 181 |
+
"bread_crumbs: 50 images\n",
|
| 182 |
+
"bread_flour: 50 images\n",
|
| 183 |
+
"broccoli: 50 images\n",
|
| 184 |
+
"brownie_mix: 50 images\n",
|
| 185 |
+
"brown_rice: 50 images\n",
|
| 186 |
+
"butter: 50 images\n",
|
| 187 |
+
"cabbage: 50 images\n",
|
| 188 |
+
"cake: 50 images\n",
|
| 189 |
+
"cardamom: 50 images\n",
|
| 190 |
+
"carrot: 50 images\n",
|
| 191 |
+
"cashews: 50 images\n",
|
| 192 |
+
"cauliflower: 50 images\n",
|
| 193 |
+
"celery: 50 images\n",
|
| 194 |
+
"cereal: 50 images\n",
|
| 195 |
+
"cheese: 50 images\n",
|
| 196 |
+
"cherries: 50 images\n",
|
| 197 |
+
"chicken: 50 images\n",
|
| 198 |
+
"chickpeas: 50 images\n",
|
| 199 |
+
"chocolate: 50 images\n",
|
| 200 |
+
"chocolate_chips: 50 images\n",
|
| 201 |
+
"chocolate_syrup: 50 images\n",
|
| 202 |
+
"cilantro: 50 images\n",
|
| 203 |
+
"cinnamon: 50 images\n",
|
| 204 |
+
"clove: 50 images\n",
|
| 205 |
+
"cocoa_powder: 50 images\n",
|
| 206 |
+
"coconut: 50 images\n",
|
| 207 |
+
"cookies: 50 images\n",
|
| 208 |
+
"corn: 50 images\n",
|
| 209 |
+
"cucumber: 50 images\n",
|
| 210 |
+
"dates: 50 images\n",
|
| 211 |
+
"eggplant: 50 images\n",
|
| 212 |
+
"eggs: 50 images\n",
|
| 213 |
+
"fish: 50 images\n",
|
| 214 |
+
"garlic: 50 images\n",
|
| 215 |
+
"ginger: 50 images\n",
|
| 216 |
+
"grapes: 50 images\n",
|
| 217 |
+
"honey: 50 images\n",
|
| 218 |
+
"jalapeno: 50 images\n",
|
| 219 |
+
"kidney_beans: 50 images\n",
|
| 220 |
+
"lemon: 50 images\n",
|
| 221 |
+
"mango: 50 images\n",
|
| 222 |
+
"marshmallows: 50 images\n",
|
| 223 |
+
"milk: 50 images\n",
|
| 224 |
+
"mint: 50 images\n",
|
| 225 |
+
"muffins: 50 images\n",
|
| 226 |
+
"mushroom: 50 images\n",
|
| 227 |
+
"noodles: 50 images\n",
|
| 228 |
+
"nuts: 50 images\n",
|
| 229 |
+
"oats: 50 images\n",
|
| 230 |
+
"okra: 50 images\n",
|
| 231 |
+
"olive: 50 images\n",
|
| 232 |
+
"onion: 50 images\n",
|
| 233 |
+
"orange: 50 images\n",
|
| 234 |
+
"oreo_cookies: 50 images\n",
|
| 235 |
+
"pasta: 50 images\n",
|
| 236 |
+
"pear: 50 images\n",
|
| 237 |
+
"pepper: 50 images\n",
|
| 238 |
+
"pineapple: 50 images\n",
|
| 239 |
+
"pistachios: 50 images\n",
|
| 240 |
+
"pork: 50 images\n",
|
| 241 |
+
"potato: 50 images\n",
|
| 242 |
+
"pumpkin: 50 images\n",
|
| 243 |
+
"radishes: 50 images\n",
|
| 244 |
+
"raisins: 50 images\n",
|
| 245 |
+
"red_chilies: 50 images\n",
|
| 246 |
+
"rice: 50 images\n",
|
| 247 |
+
"rosemary: 50 images\n",
|
| 248 |
+
"salmon: 50 images\n",
|
| 249 |
+
"salt: 50 images\n",
|
| 250 |
+
"shrimp: 50 images\n",
|
| 251 |
+
"spinach: 50 images\n",
|
| 252 |
+
"strawberries: 50 images\n",
|
| 253 |
+
"sugar: 50 images\n",
|
| 254 |
+
"sweet_potato: 50 images\n",
|
| 255 |
+
"tomato: 50 images\n",
|
| 256 |
+
"vanilla_ice_cream: 50 images\n",
|
| 257 |
+
"walnuts: 50 images\n",
|
| 258 |
+
"watermelon: 50 images\n",
|
| 259 |
+
"yogurt: 50 images\n",
|
| 260 |
+
"\n",
|
| 261 |
+
"Total images in dataset: 5000\n"
|
| 262 |
+
]
|
| 263 |
+
}
|
| 264 |
+
],
|
| 265 |
+
"source": [
|
| 266 |
+
"def count_images(dataset_dir):\n",
|
| 267 |
+
" class_image_counts = {}\n",
|
| 268 |
+
" for class_name in os.listdir(dataset_dir):\n",
|
| 269 |
+
" class_dir = os.path.join(dataset_dir, class_name)\n",
|
| 270 |
+
" if os.path.isdir(class_dir):\n",
|
| 271 |
+
" image_count = sum(1 for file in os.listdir(class_dir) if file.lower().endswith('.jpg'))\n",
|
| 272 |
+
" class_image_counts[class_name] = image_count\n",
|
| 273 |
+
" return class_image_counts\n",
|
| 274 |
+
"\n",
|
| 275 |
+
"#\n",
|
| 276 |
+
"dataset_dir = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data'\n",
|
| 277 |
+
"image_counts = count_images(dataset_dir)\n",
|
| 278 |
+
"\n",
|
| 279 |
+
"# Print out the counts\n",
|
| 280 |
+
"for class_name, count in image_counts.items():\n",
|
| 281 |
+
" print(f\"{class_name}: {count} images\")\n",
|
| 282 |
+
"\n",
|
| 283 |
+
"# Optional: total image count\n",
|
| 284 |
+
"total_images = sum(image_counts.values())\n",
|
| 285 |
+
"print(f\"\\nTotal images in dataset: {total_images}\")"
|
| 286 |
+
]
|
| 287 |
+
},
|
| 288 |
+
{
|
| 289 |
+
"cell_type": "markdown",
|
| 290 |
+
"metadata": {},
|
| 291 |
+
"source": [
|
| 292 |
+
"- remove images that count is more than 50 per class "
|
| 293 |
+
]
|
| 294 |
+
},
|
| 295 |
+
{
|
| 296 |
+
"cell_type": "code",
|
| 297 |
+
"execution_count": 5,
|
| 298 |
+
"metadata": {},
|
| 299 |
+
"outputs": [
|
| 300 |
+
{
|
| 301 |
+
"name": "stdout",
|
| 302 |
+
"output_type": "stream",
|
| 303 |
+
"text": [
|
| 304 |
+
"Class 'all_purpose_flour' meets the maximum image requirement.\n",
|
| 305 |
+
"Class 'almonds' meets the maximum image requirement.\n",
|
| 306 |
+
"Class 'apple' meets the maximum image requirement.\n",
|
| 307 |
+
"Class 'apricot' meets the maximum image requirement.\n",
|
| 308 |
+
"Class 'asparagus' meets the maximum image requirement.\n",
|
| 309 |
+
"Class 'avocado' meets the maximum image requirement.\n",
|
| 310 |
+
"Class 'bacon' meets the maximum image requirement.\n",
|
| 311 |
+
"Class 'banana' meets the maximum image requirement.\n",
|
| 312 |
+
"Class 'barley' meets the maximum image requirement.\n",
|
| 313 |
+
"Class 'basil' meets the maximum image requirement.\n",
|
| 314 |
+
"Class 'basmati_rice' meets the maximum image requirement.\n",
|
| 315 |
+
"Class 'beans' meets the maximum image requirement.\n",
|
| 316 |
+
"Class 'beef' meets the maximum image requirement.\n",
|
| 317 |
+
"Class 'beets' meets the maximum image requirement.\n",
|
| 318 |
+
"Class 'bell_pepper' meets the maximum image requirement.\n",
|
| 319 |
+
"Class 'berries' meets the maximum image requirement.\n",
|
| 320 |
+
"Class 'biscuits' meets the maximum image requirement.\n",
|
| 321 |
+
"Class 'blackberries' meets the maximum image requirement.\n",
|
| 322 |
+
"Class 'black_pepper' meets the maximum image requirement.\n",
|
| 323 |
+
"Class 'blueberries' meets the maximum image requirement.\n",
|
| 324 |
+
"Class 'bread' meets the maximum image requirement.\n",
|
| 325 |
+
"Class 'bread_crumbs' meets the maximum image requirement.\n",
|
| 326 |
+
"Class 'bread_flour' meets the maximum image requirement.\n",
|
| 327 |
+
"Class 'broccoli' meets the maximum image requirement.\n",
|
| 328 |
+
"Class 'brownie_mix' meets the maximum image requirement.\n",
|
| 329 |
+
"Class 'brown_rice' meets the maximum image requirement.\n",
|
| 330 |
+
"Class 'butter' meets the maximum image requirement.\n",
|
| 331 |
+
"Class 'cabbage' meets the maximum image requirement.\n",
|
| 332 |
+
"Class 'cake' meets the maximum image requirement.\n",
|
| 333 |
+
"Class 'cardamom' meets the maximum image requirement.\n",
|
| 334 |
+
"Class 'carrot' meets the maximum image requirement.\n",
|
| 335 |
+
"Class 'cashews' meets the maximum image requirement.\n",
|
| 336 |
+
"Class 'cauliflower' meets the maximum image requirement.\n",
|
| 337 |
+
"Class 'celery' meets the maximum image requirement.\n",
|
| 338 |
+
"Class 'cereal' meets the maximum image requirement.\n",
|
| 339 |
+
"Class 'cheese' meets the maximum image requirement.\n",
|
| 340 |
+
"Class 'cherries' meets the maximum image requirement.\n",
|
| 341 |
+
"Class 'chicken' meets the maximum image requirement.\n",
|
| 342 |
+
"Class 'chickpeas' meets the maximum image requirement.\n",
|
| 343 |
+
"Class 'chocolate' meets the maximum image requirement.\n",
|
| 344 |
+
"Class 'chocolate_chips' meets the maximum image requirement.\n",
|
| 345 |
+
"Class 'chocolate_syrup' meets the maximum image requirement.\n",
|
| 346 |
+
"Class 'cilantro' meets the maximum image requirement.\n",
|
| 347 |
+
"Class 'cinnamon' meets the maximum image requirement.\n",
|
| 348 |
+
"Class 'clove' meets the maximum image requirement.\n",
|
| 349 |
+
"Removed 15 images from 'cocoa_powder' to meet the maximum of 50 images.\n",
|
| 350 |
+
"Removed 57 images from 'coconut' to meet the maximum of 50 images.\n",
|
| 351 |
+
"Class 'cookies' meets the maximum image requirement.\n",
|
| 352 |
+
"Class 'corn' meets the maximum image requirement.\n",
|
| 353 |
+
"Class 'cucumber' meets the maximum image requirement.\n",
|
| 354 |
+
"Class 'dates' meets the maximum image requirement.\n",
|
| 355 |
+
"Class 'eggplant' meets the maximum image requirement.\n",
|
| 356 |
+
"Class 'eggs' meets the maximum image requirement.\n",
|
| 357 |
+
"Class 'fish' meets the maximum image requirement.\n",
|
| 358 |
+
"Class 'garlic' meets the maximum image requirement.\n",
|
| 359 |
+
"Class 'ginger' meets the maximum image requirement.\n",
|
| 360 |
+
"Class 'grapes' meets the maximum image requirement.\n",
|
| 361 |
+
"Class 'honey' meets the maximum image requirement.\n",
|
| 362 |
+
"Class 'jalapeno' meets the maximum image requirement.\n",
|
| 363 |
+
"Class 'kidney_beans' meets the maximum image requirement.\n",
|
| 364 |
+
"Class 'lemon' meets the maximum image requirement.\n",
|
| 365 |
+
"Class 'mango' meets the maximum image requirement.\n",
|
| 366 |
+
"Class 'marshmallows' meets the maximum image requirement.\n",
|
| 367 |
+
"Class 'milk' meets the maximum image requirement.\n",
|
| 368 |
+
"Class 'mint' meets the maximum image requirement.\n",
|
| 369 |
+
"Class 'muffins' meets the maximum image requirement.\n",
|
| 370 |
+
"Class 'mushroom' meets the maximum image requirement.\n",
|
| 371 |
+
"Class 'noodles' meets the maximum image requirement.\n",
|
| 372 |
+
"Class 'nuts' meets the maximum image requirement.\n",
|
| 373 |
+
"Class 'oats' meets the maximum image requirement.\n",
|
| 374 |
+
"Class 'okra' meets the maximum image requirement.\n",
|
| 375 |
+
"Class 'olive' meets the maximum image requirement.\n",
|
| 376 |
+
"Class 'onion' meets the maximum image requirement.\n",
|
| 377 |
+
"Class 'orange' meets the maximum image requirement.\n",
|
| 378 |
+
"Class 'oreo_cookies' meets the maximum image requirement.\n",
|
| 379 |
+
"Class 'pasta' meets the maximum image requirement.\n",
|
| 380 |
+
"Class 'pear' meets the maximum image requirement.\n",
|
| 381 |
+
"Class 'pepper' meets the maximum image requirement.\n",
|
| 382 |
+
"Class 'pineapple' meets the maximum image requirement.\n",
|
| 383 |
+
"Class 'pistachios' meets the maximum image requirement.\n",
|
| 384 |
+
"Class 'pork' meets the maximum image requirement.\n",
|
| 385 |
+
"Class 'potato' meets the maximum image requirement.\n",
|
| 386 |
+
"Class 'pumpkin' meets the maximum image requirement.\n",
|
| 387 |
+
"Class 'radishes' meets the maximum image requirement.\n",
|
| 388 |
+
"Class 'raisins' meets the maximum image requirement.\n",
|
| 389 |
+
"Class 'red_chilies' meets the maximum image requirement.\n",
|
| 390 |
+
"Class 'rice' meets the maximum image requirement.\n",
|
| 391 |
+
"Removed 8 images from 'rosemary' to meet the maximum of 50 images.\n",
|
| 392 |
+
"Removed 3 images from 'salmon' to meet the maximum of 50 images.\n",
|
| 393 |
+
"Removed 3 images from 'salt' to meet the maximum of 50 images.\n",
|
| 394 |
+
"Removed 9 images from 'shrimp' to meet the maximum of 50 images.\n",
|
| 395 |
+
"Removed 8 images from 'spinach' to meet the maximum of 50 images.\n",
|
| 396 |
+
"Removed 9 images from 'strawberries' to meet the maximum of 50 images.\n",
|
| 397 |
+
"Removed 8 images from 'sugar' to meet the maximum of 50 images.\n",
|
| 398 |
+
"Removed 9 images from 'sweet_potato' to meet the maximum of 50 images.\n",
|
| 399 |
+
"Removed 4 images from 'tomato' to meet the maximum of 50 images.\n",
|
| 400 |
+
"Removed 8 images from 'vanilla_ice_cream' to meet the maximum of 50 images.\n",
|
| 401 |
+
"Class 'walnuts' meets the maximum image requirement.\n",
|
| 402 |
+
"Class 'watermelon' meets the maximum image requirement.\n",
|
| 403 |
+
"Class 'yogurt' meets the maximum image requirement.\n",
|
| 404 |
+
"Image reduction completed.\n"
|
| 405 |
+
]
|
| 406 |
+
}
|
| 407 |
+
],
|
| 408 |
+
"source": [
|
| 409 |
+
"import random\n",
|
| 410 |
+
"\n",
|
| 411 |
+
"def remove_images_if_more_than(dataset_dir, max_images=50):\n",
|
| 412 |
+
" for class_name in os.listdir(dataset_dir):\n",
|
| 413 |
+
" class_dir = os.path.join(dataset_dir, class_name)\n",
|
| 414 |
+
" if os.path.isdir(class_dir):\n",
|
| 415 |
+
" images = [file for file in os.listdir(class_dir) if file.lower().endswith('.jpg')]\n",
|
| 416 |
+
" if len(images) > max_images:\n",
|
| 417 |
+
" images_to_remove = random.sample(images, len(images) - max_images)\n",
|
| 418 |
+
" for image in images_to_remove:\n",
|
| 419 |
+
" image_path = os.path.join(class_dir, image)\n",
|
| 420 |
+
" os.remove(image_path)\n",
|
| 421 |
+
" print(f\"Removed {len(images_to_remove)} images from '{class_name}' to meet the maximum of {max_images} images.\")\n",
|
| 422 |
+
" else:\n",
|
| 423 |
+
" print(f\"Class '{class_name}' meets the maximum image requirement.\")\n",
|
| 424 |
+
"\n",
|
| 425 |
+
"# Specify the path to your dataset directory\n",
|
| 426 |
+
"dataset_dir = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data'\n",
|
| 427 |
+
"remove_images_if_more_than(dataset_dir, 50)\n",
|
| 428 |
+
"\n",
|
| 429 |
+
"print(\"Image reduction completed.\")"
|
| 430 |
+
]
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"cell_type": "markdown",
|
| 434 |
+
"metadata": {},
|
| 435 |
+
"source": [
|
| 436 |
+
"- augemnet to make every class contains count of 50"
|
| 437 |
+
]
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"cell_type": "code",
|
| 441 |
+
"execution_count": 10,
|
| 442 |
+
"metadata": {},
|
| 443 |
+
"outputs": [
|
| 444 |
+
{
|
| 445 |
+
"name": "stdout",
|
| 446 |
+
"output_type": "stream",
|
| 447 |
+
"text": [
|
| 448 |
+
"Collecting imgaug\n",
|
| 449 |
+
" Downloading imgaug-0.4.0-py2.py3-none-any.whl.metadata (1.8 kB)\n",
|
| 450 |
+
"Requirement already satisfied: six in c:\\users\\kiyo\\appdata\\roaming\\python\\python312\\site-packages (from imgaug) (1.16.0)\n",
|
| 451 |
+
"Requirement already satisfied: numpy>=1.15 in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from imgaug) (1.26.3)\n",
|
| 452 |
+
"Requirement already satisfied: scipy in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from imgaug) (1.12.0)\n",
|
| 453 |
+
"Requirement already satisfied: Pillow in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from imgaug) (10.2.0)\n",
|
| 454 |
+
"Requirement already satisfied: matplotlib in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from imgaug) (3.8.2)\n",
|
| 455 |
+
"Requirement already satisfied: scikit-image>=0.14.2 in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from imgaug) (0.22.0)\n",
|
| 456 |
+
"Requirement already satisfied: opencv-python in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from imgaug) (4.9.0.80)\n",
|
| 457 |
+
"Requirement already satisfied: imageio in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from imgaug) (2.34.0)\n",
|
| 458 |
+
"Requirement already satisfied: Shapely in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from imgaug) (2.0.2)\n",
|
| 459 |
+
"Requirement already satisfied: networkx>=2.8 in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from scikit-image>=0.14.2->imgaug) (3.2.1)\n",
|
| 460 |
+
"Requirement already satisfied: tifffile>=2022.8.12 in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from scikit-image>=0.14.2->imgaug) (2024.2.12)\n",
|
| 461 |
+
"Requirement already satisfied: packaging>=21 in c:\\users\\kiyo\\appdata\\roaming\\python\\python312\\site-packages (from scikit-image>=0.14.2->imgaug) (23.2)\n",
|
| 462 |
+
"Requirement already satisfied: lazy_loader>=0.3 in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from scikit-image>=0.14.2->imgaug) (0.3)\n",
|
| 463 |
+
"Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib->imgaug) (1.2.0)\n",
|
| 464 |
+
"Requirement already satisfied: cycler>=0.10 in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib->imgaug) (0.12.1)\n",
|
| 465 |
+
"Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib->imgaug) (4.47.2)\n",
|
| 466 |
+
"Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib->imgaug) (1.4.5)\n",
|
| 467 |
+
"Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\kiyo\\appdata\\local\\programs\\python\\python312\\lib\\site-packages (from matplotlib->imgaug) (3.1.1)\n",
|
| 468 |
+
"Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\kiyo\\appdata\\roaming\\python\\python312\\site-packages (from matplotlib->imgaug) (2.8.2)\n",
|
| 469 |
+
"Downloading imgaug-0.4.0-py2.py3-none-any.whl (948 kB)\n",
|
| 470 |
+
" ---------------------------------------- 0.0/948.0 kB ? eta -:--:--\n",
|
| 471 |
+
" ---------------------------------------- 10.2/948.0 kB ? eta -:--:--\n",
|
| 472 |
+
" - ------------------------------------- 30.7/948.0 kB 660.6 kB/s eta 0:00:02\n",
|
| 473 |
+
" ------ --------------------------------- 153.6/948.0 kB 1.5 MB/s eta 0:00:01\n",
|
| 474 |
+
" ------------------------ --------------- 583.7/948.0 kB 4.6 MB/s eta 0:00:01\n",
|
| 475 |
+
" ---------------------------------------- 948.0/948.0 kB 5.0 MB/s eta 0:00:00\n",
|
| 476 |
+
"Installing collected packages: imgaug\n",
|
| 477 |
+
"Successfully installed imgaug-0.4.0\n"
|
| 478 |
+
]
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"name": "stderr",
|
| 482 |
+
"output_type": "stream",
|
| 483 |
+
"text": [
|
| 484 |
+
"DEPRECATION: celery 4.2.0 has a non-standard dependency specifier pytz>dev. pip 24.1 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of celery or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063\n"
|
| 485 |
+
]
|
| 486 |
+
}
|
| 487 |
+
],
|
| 488 |
+
"source": [
|
| 489 |
+
"!pip install imgaug\n"
|
| 490 |
+
]
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"cell_type": "code",
|
| 494 |
+
"execution_count": 19,
|
| 495 |
+
"metadata": {},
|
| 496 |
+
"outputs": [
|
| 497 |
+
{
|
| 498 |
+
"name": "stdout",
|
| 499 |
+
"output_type": "stream",
|
| 500 |
+
"text": [
|
| 501 |
+
"Completed augmentation for class 'all_purpose_flour'.\n",
|
| 502 |
+
"Completed augmentation for class 'almonds'.\n",
|
| 503 |
+
"Completed augmentation for class 'apple'.\n",
|
| 504 |
+
"Completed augmentation for class 'apricot'.\n",
|
| 505 |
+
"Completed augmentation for class 'asparagus'.\n",
|
| 506 |
+
"Completed augmentation for class 'avocado'.\n",
|
| 507 |
+
"Completed augmentation for class 'bacon'.\n",
|
| 508 |
+
"Completed augmentation for class 'banana'.\n",
|
| 509 |
+
"Completed augmentation for class 'barley'.\n",
|
| 510 |
+
"Completed augmentation for class 'basil'.\n",
|
| 511 |
+
"Completed augmentation for class 'basmati_rice'.\n",
|
| 512 |
+
"Completed augmentation for class 'beans'.\n",
|
| 513 |
+
"Completed augmentation for class 'beef'.\n",
|
| 514 |
+
"Completed augmentation for class 'beets'.\n",
|
| 515 |
+
"Completed augmentation for class 'bell_pepper'.\n",
|
| 516 |
+
"Completed augmentation for class 'berries'.\n",
|
| 517 |
+
"Completed augmentation for class 'biscuits'.\n",
|
| 518 |
+
"Completed augmentation for class 'blackberries'.\n",
|
| 519 |
+
"Completed augmentation for class 'black_pepper'.\n",
|
| 520 |
+
"Completed augmentation for class 'blueberries'.\n",
|
| 521 |
+
"Completed augmentation for class 'bread'.\n",
|
| 522 |
+
"Completed augmentation for class 'bread_crumbs'.\n",
|
| 523 |
+
"Completed augmentation for class 'bread_flour'.\n",
|
| 524 |
+
"Completed augmentation for class 'broccoli'.\n",
|
| 525 |
+
"Completed augmentation for class 'brownie_mix'.\n",
|
| 526 |
+
"Completed augmentation for class 'brown_rice'.\n",
|
| 527 |
+
"Completed augmentation for class 'butter'.\n",
|
| 528 |
+
"Completed augmentation for class 'cabbage'.\n",
|
| 529 |
+
"Completed augmentation for class 'cake'.\n",
|
| 530 |
+
"Completed augmentation for class 'cardamom'.\n",
|
| 531 |
+
"Completed augmentation for class 'carrot'.\n",
|
| 532 |
+
"Completed augmentation for class 'cashews'.\n",
|
| 533 |
+
"Completed augmentation for class 'cauliflower'.\n",
|
| 534 |
+
"Completed augmentation for class 'celery'.\n",
|
| 535 |
+
"Completed augmentation for class 'cereal'.\n",
|
| 536 |
+
"Completed augmentation for class 'cheese'.\n",
|
| 537 |
+
"Completed augmentation for class 'cherries'.\n",
|
| 538 |
+
"Completed augmentation for class 'chicken'.\n",
|
| 539 |
+
"Completed augmentation for class 'chickpeas'.\n",
|
| 540 |
+
"Completed augmentation for class 'chocolate'.\n",
|
| 541 |
+
"Completed augmentation for class 'chocolate_chips'.\n",
|
| 542 |
+
"Completed augmentation for class 'chocolate_syrup'.\n",
|
| 543 |
+
"Completed augmentation for class 'cilantro'.\n",
|
| 544 |
+
"Completed augmentation for class 'cinnamon'.\n",
|
| 545 |
+
"Completed augmentation for class 'clove'.\n",
|
| 546 |
+
"Completed augmentation for class 'cocoa_powder'.\n",
|
| 547 |
+
"Completed augmentation for class 'coconut'.\n",
|
| 548 |
+
"Completed augmentation for class 'cookies'.\n",
|
| 549 |
+
"Completed augmentation for class 'corn'.\n",
|
| 550 |
+
"Completed augmentation for class 'cucumber'.\n",
|
| 551 |
+
"Completed augmentation for class 'dates'.\n",
|
| 552 |
+
"Completed augmentation for class 'eggplant'.\n",
|
| 553 |
+
"Completed augmentation for class 'eggs'.\n",
|
| 554 |
+
"Completed augmentation for class 'fish'.\n",
|
| 555 |
+
"Completed augmentation for class 'garlic'.\n",
|
| 556 |
+
"Completed augmentation for class 'ginger'.\n",
|
| 557 |
+
"Completed augmentation for class 'grapes'.\n",
|
| 558 |
+
"Completed augmentation for class 'honey'.\n",
|
| 559 |
+
"Completed augmentation for class 'jalapeno'.\n",
|
| 560 |
+
"Completed augmentation for class 'kidney_beans'.\n",
|
| 561 |
+
"Completed augmentation for class 'lemon'.\n",
|
| 562 |
+
"Completed augmentation for class 'mango'.\n",
|
| 563 |
+
"Completed augmentation for class 'marshmallows'.\n",
|
| 564 |
+
"Completed augmentation for class 'milk'.\n",
|
| 565 |
+
"Completed augmentation for class 'mint'.\n",
|
| 566 |
+
"Completed augmentation for class 'muffins'.\n",
|
| 567 |
+
"Completed augmentation for class 'mushroom'.\n",
|
| 568 |
+
"Completed augmentation for class 'noodles'.\n",
|
| 569 |
+
"Completed augmentation for class 'nuts'.\n",
|
| 570 |
+
"Completed augmentation for class 'oats'.\n",
|
| 571 |
+
"Completed augmentation for class 'okra'.\n",
|
| 572 |
+
"Completed augmentation for class 'olive'.\n",
|
| 573 |
+
"Completed augmentation for class 'onion'.\n",
|
| 574 |
+
"Completed augmentation for class 'orange'.\n",
|
| 575 |
+
"Completed augmentation for class 'oreo_cookies'.\n",
|
| 576 |
+
"Completed augmentation for class 'pasta'.\n",
|
| 577 |
+
"Completed augmentation for class 'pear'.\n",
|
| 578 |
+
"Completed augmentation for class 'pepper'.\n",
|
| 579 |
+
"Completed augmentation for class 'pineapple'.\n",
|
| 580 |
+
"Completed augmentation for class 'pistachios'.\n",
|
| 581 |
+
"Completed augmentation for class 'pork'.\n",
|
| 582 |
+
"Completed augmentation for class 'potato'.\n",
|
| 583 |
+
"Completed augmentation for class 'pumpkin'.\n",
|
| 584 |
+
"Completed augmentation for class 'radishes'.\n",
|
| 585 |
+
"Completed augmentation for class 'raisins'.\n",
|
| 586 |
+
"Completed augmentation for class 'red_chilies'.\n",
|
| 587 |
+
"Completed augmentation for class 'rice'.\n",
|
| 588 |
+
"Completed augmentation for class 'rosemary'.\n",
|
| 589 |
+
"Completed augmentation for class 'salmon'.\n",
|
| 590 |
+
"Completed augmentation for class 'salt'.\n",
|
| 591 |
+
"Completed augmentation for class 'shrimp'.\n",
|
| 592 |
+
"Completed augmentation for class 'spinach'.\n",
|
| 593 |
+
"Completed augmentation for class 'strawberries'.\n",
|
| 594 |
+
"Completed augmentation for class 'sugar'.\n",
|
| 595 |
+
"Completed augmentation for class 'sweet_potato'.\n",
|
| 596 |
+
"Completed augmentation for class 'tomato'.\n",
|
| 597 |
+
"Completed augmentation for class 'vanilla_ice_cream'.\n",
|
| 598 |
+
"Completed augmentation for class 'walnuts'.\n",
|
| 599 |
+
"Completed augmentation for class 'watermelon'.\n",
|
| 600 |
+
"Completed augmentation for class 'yogurt'.\n",
|
| 601 |
+
"Dataset augmentation completed.\n"
|
| 602 |
+
]
|
| 603 |
+
}
|
| 604 |
+
],
|
| 605 |
+
"source": [
|
| 606 |
+
"import os\n",
|
| 607 |
+
"import random\n",
|
| 608 |
+
"from PIL import Image\n",
|
| 609 |
+
"import imgaug as ia\n",
|
| 610 |
+
"import imgaug.augmenters as iaa\n",
|
| 611 |
+
"import numpy as np\n",
|
| 612 |
+
"\n",
|
| 613 |
+
"ia.seed(1)\n",
|
| 614 |
+
"\n",
|
| 615 |
+
"def augment_image(image_path, save_dir, augmentation, img_count):\n",
|
| 616 |
+
" image = Image.open(image_path)\n",
|
| 617 |
+
" # Convert image to RGB if it's not already in that format\n",
|
| 618 |
+
" if image.mode != 'RGB':\n",
|
| 619 |
+
" image = image.convert('RGB')\n",
|
| 620 |
+
" image_np = np.array(image)\n",
|
| 621 |
+
" augmented_image_np = augmentation(image=image_np)\n",
|
| 622 |
+
" augmented_image = Image.fromarray(augmented_image_np)\n",
|
| 623 |
+
" base_name = os.path.basename(image_path)\n",
|
| 624 |
+
" new_image_path = os.path.join(save_dir, f\"{os.path.splitext(base_name)[0]}_aug_{img_count}.jpg\")\n",
|
| 625 |
+
" augmented_image.save(new_image_path)\n",
|
| 626 |
+
"\n",
|
| 627 |
+
"\n",
|
| 628 |
+
"def augment_class_images(class_dir, target_count=50):\n",
|
| 629 |
+
" images = [file for file in os.listdir(class_dir) if file.lower().endswith('.jpg')]\n",
|
| 630 |
+
" current_count = len(images)\n",
|
| 631 |
+
" \n",
|
| 632 |
+
" augmentation = iaa.Sequential([\n",
|
| 633 |
+
" iaa.Fliplr(0.5), # Horizontally flip 50% of the images\n",
|
| 634 |
+
" iaa.Crop(percent=(0, 0.1)), # Perform random crops\n",
|
| 635 |
+
" \n",
|
| 636 |
+
" # Apply affine transformations\n",
|
| 637 |
+
" iaa.Affine(\n",
|
| 638 |
+
" scale={\"x\": (0.8, 1.2), \"y\": (0.8, 1.2)},\n",
|
| 639 |
+
" translate_percent={\"x\": (-0.2, 0.2), \"y\": (-0.2, 0.2)},\n",
|
| 640 |
+
" rotate=(-25, 25),\n",
|
| 641 |
+
" shear=(-8, 8)\n",
|
| 642 |
+
" ),\n",
|
| 643 |
+
" \n",
|
| 644 |
+
" # Adjust brightness and contrast\n",
|
| 645 |
+
" iaa.Multiply((0.8, 1.2)), # Change brightness (80-120% of original value)\n",
|
| 646 |
+
" iaa.LinearContrast((0.75, 1.5)), # Strengthen or weaken the contrast in each image.\n",
|
| 647 |
+
" \n",
|
| 648 |
+
" # Apply color temperature changes\n",
|
| 649 |
+
" iaa.Sequential([\n",
|
| 650 |
+
" iaa.ChangeColorTemperature((1100, 10000)), # Simulate different color temperatures\n",
|
| 651 |
+
" iaa.WithChannels(0, iaa.Add((10, 100))) # Optionally, add more red for warmth\n",
|
| 652 |
+
" ], random_order=True) # Apply these changes in a random order\n",
|
| 653 |
+
" ])\n",
|
| 654 |
+
" \n",
|
| 655 |
+
" if current_count < target_count:\n",
|
| 656 |
+
" while current_count < target_count:\n",
|
| 657 |
+
" for img_file in random.sample(images, min(len(images), target_count - current_count)):\n",
|
| 658 |
+
" augment_image(os.path.join(class_dir, img_file), class_dir, augmentation, current_count)\n",
|
| 659 |
+
" current_count += 1\n",
|
| 660 |
+
" if current_count >= target_count:\n",
|
| 661 |
+
" break\n",
|
| 662 |
+
"\n",
|
| 663 |
+
"def augment_dataset_if_needed(dataset_dir, target_count=50):\n",
|
| 664 |
+
" for class_name in os.listdir(dataset_dir):\n",
|
| 665 |
+
" class_dir = os.path.join(dataset_dir, class_name)\n",
|
| 666 |
+
" if os.path.isdir(class_dir):\n",
|
| 667 |
+
" augment_class_images(class_dir, target_count)\n",
|
| 668 |
+
" print(f\"Completed augmentation for class '{class_name}'.\")\n",
|
| 669 |
+
"\n",
|
| 670 |
+
"# Specify the path to your dataset directory\n",
|
| 671 |
+
"dataset_dir = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data'\n",
|
| 672 |
+
"augment_dataset_if_needed(dataset_dir, 50)\n",
|
| 673 |
+
"\n",
|
| 674 |
+
"print(\"Dataset augmentation completed.\")\n"
|
| 675 |
+
]
|
| 676 |
+
}
|
| 677 |
+
],
|
| 678 |
+
"metadata": {
|
| 679 |
+
"kernelspec": {
|
| 680 |
+
"display_name": "Python 3",
|
| 681 |
+
"language": "python",
|
| 682 |
+
"name": "python3"
|
| 683 |
+
},
|
| 684 |
+
"language_info": {
|
| 685 |
+
"codemirror_mode": {
|
| 686 |
+
"name": "ipython",
|
| 687 |
+
"version": 3
|
| 688 |
+
},
|
| 689 |
+
"file_extension": ".py",
|
| 690 |
+
"mimetype": "text/x-python",
|
| 691 |
+
"name": "python",
|
| 692 |
+
"nbconvert_exporter": "python",
|
| 693 |
+
"pygments_lexer": "ipython3",
|
| 694 |
+
"version": "3.12.1"
|
| 695 |
+
}
|
| 696 |
+
},
|
| 697 |
+
"nbformat": 4,
|
| 698 |
+
"nbformat_minor": 2
|
| 699 |
+
}
|
automating_annotation.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
correction_for_augmented data.ipynb
ADDED
|
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"### Check for the corrections in the augmented data"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": 2,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"\n",
|
| 17 |
+
"import os\n"
|
| 18 |
+
]
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"cell_type": "code",
|
| 22 |
+
"execution_count": 3,
|
| 23 |
+
"metadata": {},
|
| 24 |
+
"outputs": [
|
| 25 |
+
{
|
| 26 |
+
"name": "stdout",
|
| 27 |
+
"output_type": "stream",
|
| 28 |
+
"text": [
|
| 29 |
+
"Class 'all_purpose_flour_annotated': Perfect\n",
|
| 30 |
+
"Class 'almonds_annotated': Perfect\n",
|
| 31 |
+
"Class 'apple_annotated': Perfect\n",
|
| 32 |
+
"Class 'apricot_annotated': Perfect\n",
|
| 33 |
+
"Class 'asparagus_annotated': Perfect\n",
|
| 34 |
+
"Class 'avocado_annotated': Perfect\n",
|
| 35 |
+
"Class 'bacon_annotated': Perfect\n",
|
| 36 |
+
"Class 'banana_annotated': Perfect\n",
|
| 37 |
+
"Class 'barley_annotated': Perfect\n",
|
| 38 |
+
"Class 'basil_annotated': Perfect\n",
|
| 39 |
+
"Class 'basmati_rice_annotated': Perfect\n",
|
| 40 |
+
"Class 'beans_annotated': Perfect\n",
|
| 41 |
+
"Class 'beef_annotated': Perfect\n",
|
| 42 |
+
"Class 'beets_annotated': Perfect\n",
|
| 43 |
+
"Class 'bell_pepper_annotated': Perfect\n",
|
| 44 |
+
"Class 'berries_annotated': Perfect\n",
|
| 45 |
+
"Class 'biscuits_annotated': Perfect\n",
|
| 46 |
+
"Class 'blackberries_annotated': Perfect\n",
|
| 47 |
+
"Class 'black_pepper_annotated': Perfect\n",
|
| 48 |
+
"Class 'blueberries_annotated': Perfect\n",
|
| 49 |
+
"Class 'bread_annotated': Perfect\n",
|
| 50 |
+
"Class 'bread_crumbs_annotated': Perfect\n",
|
| 51 |
+
"Class 'bread_flour_annotated': Perfect\n",
|
| 52 |
+
"Class 'broccoli_annotated': Perfect\n",
|
| 53 |
+
"Class 'brownie_mix_annotated': Perfect\n",
|
| 54 |
+
"Class 'brown_rice_annotated': Perfect\n",
|
| 55 |
+
"Class 'butter_annotated': Perfect\n",
|
| 56 |
+
"Class 'cabbage_annotated': Perfect\n",
|
| 57 |
+
"Class 'cake_annotated': Perfect\n",
|
| 58 |
+
"Class 'cardamom_annotated': Perfect\n",
|
| 59 |
+
"Class 'carrot_annotated': Perfect\n",
|
| 60 |
+
"Class 'cashews_annotated': Perfect\n",
|
| 61 |
+
"Class 'cauliflower_annotated': Perfect\n",
|
| 62 |
+
"Class 'celery_annotated': Perfect\n",
|
| 63 |
+
"Class 'cereal_annotated': Perfect\n",
|
| 64 |
+
"Class 'cheese_annotated': Perfect\n",
|
| 65 |
+
"Class 'cherries_annotated': Perfect\n",
|
| 66 |
+
"Class 'chicken_annotated': Perfect\n",
|
| 67 |
+
"Class 'chickpeas_annotated': Perfect\n",
|
| 68 |
+
"Class 'chocolate_annotated': Perfect\n",
|
| 69 |
+
"Class 'chocolate_chips_annotated': Perfect\n",
|
| 70 |
+
"Class 'chocolate_syrup_annotated': Perfect\n",
|
| 71 |
+
"Class 'cilantro_annotated': Perfect\n",
|
| 72 |
+
"Class 'cinnamon_annotated': Perfect\n",
|
| 73 |
+
"Class 'clove_annotated': Perfect\n",
|
| 74 |
+
"Class 'cocoa_powder_annotated': Perfect\n",
|
| 75 |
+
"Class 'coconut_annotated': Perfect\n",
|
| 76 |
+
"Class 'cookies_annotated': Perfect\n",
|
| 77 |
+
"Class 'corn_annotated': Perfect\n",
|
| 78 |
+
"Class 'cucumber_annotated': Perfect\n",
|
| 79 |
+
"Class 'dates_annotated': Perfect\n",
|
| 80 |
+
"Class 'eggplant_annotated': Perfect\n",
|
| 81 |
+
"Class 'eggs_annotated': Perfect\n",
|
| 82 |
+
"Class 'fish_annotated': Perfect\n",
|
| 83 |
+
"Class 'garlic_annotated': Perfect\n",
|
| 84 |
+
"Class 'ginger_annotated': Perfect\n",
|
| 85 |
+
"Class 'grapes_annotated': Perfect\n",
|
| 86 |
+
"Class 'honey_annotated': Perfect\n",
|
| 87 |
+
"Class 'jalapeno_annotated': Perfect\n",
|
| 88 |
+
"Class 'kidney_beans_annotated': Perfect\n",
|
| 89 |
+
"Class 'lemon_annotated': Perfect\n",
|
| 90 |
+
"Class 'mango_annotated': Perfect\n",
|
| 91 |
+
"Class 'marshmallows_annotated': Perfect\n",
|
| 92 |
+
"Class 'milk_annotated': Perfect\n",
|
| 93 |
+
"Class 'mint_annotated': Perfect\n",
|
| 94 |
+
"Class 'muffins_annotated': Perfect\n",
|
| 95 |
+
"Class 'mushroom_annotated': Perfect\n",
|
| 96 |
+
"Class 'noodles_annotated': Perfect\n",
|
| 97 |
+
"Class 'nuts_annotated': Perfect\n",
|
| 98 |
+
"Class 'oats_annotated': Perfect\n",
|
| 99 |
+
"Class 'okra_annotated': Perfect\n",
|
| 100 |
+
"Class 'olive_annotated': Perfect\n",
|
| 101 |
+
"Class 'onion_annotated': Perfect\n",
|
| 102 |
+
"Class 'orange_annotated': Perfect\n",
|
| 103 |
+
"Class 'oreo_cookies_annotated': Perfect\n",
|
| 104 |
+
"Class 'pasta_annotated': Perfect\n",
|
| 105 |
+
"Class 'pear_annotated': Perfect\n",
|
| 106 |
+
"Class 'pepper_annotated': Perfect\n",
|
| 107 |
+
"Class 'pineapple_annotated': Perfect\n",
|
| 108 |
+
"Class 'pistachios_annotated': Perfect\n",
|
| 109 |
+
"Class 'pork_annotated': Perfect\n",
|
| 110 |
+
"Class 'potato_annotated': Perfect\n",
|
| 111 |
+
"Class 'pumpkin_annotated': Perfect\n",
|
| 112 |
+
"Class 'radishes_annotated': Perfect\n",
|
| 113 |
+
"Class 'raisins_annotated': Perfect\n",
|
| 114 |
+
"Class 'red_chilies_annotated': Discrepancies Found\n",
|
| 115 |
+
" Missing JPG files for: Image_21\n",
|
| 116 |
+
" Non-JPG/XML files: Image_21.JPG\n",
|
| 117 |
+
"Class 'rice_annotated': Discrepancies Found\n",
|
| 118 |
+
" Missing JPG files for: Image_30\n",
|
| 119 |
+
" Non-JPG/XML files: Image_30.JPG\n",
|
| 120 |
+
"Class 'rosemary_annotated': Discrepancies Found\n",
|
| 121 |
+
" Missing JPG files for: Image_26\n",
|
| 122 |
+
" Non-JPG/XML files: Image_26.JPG\n",
|
| 123 |
+
"Class 'salmon_annotated': Perfect\n",
|
| 124 |
+
"Class 'salt_annotated': Perfect\n",
|
| 125 |
+
"Class 'shrimp_annotated': Discrepancies Found\n",
|
| 126 |
+
" Missing JPG files for: Image_16, Image_17\n",
|
| 127 |
+
" Non-JPG/XML files: Image_16.JPG, Image_17.JPG\n",
|
| 128 |
+
"Class 'spinach_annotated': Discrepancies Found\n",
|
| 129 |
+
" Missing JPG files for: Image_27\n",
|
| 130 |
+
" Non-JPG/XML files: Image_27.JPG\n",
|
| 131 |
+
"Class 'strawberries_annotated': Discrepancies Found\n",
|
| 132 |
+
" Missing JPG files for: Image_10, Image_20\n",
|
| 133 |
+
" Non-JPG/XML files: Image_10.JPG, Image_20.JPG\n",
|
| 134 |
+
"Class 'sugar_annotated': Perfect\n",
|
| 135 |
+
"Class 'sweet_potato_annotated': Discrepancies Found\n",
|
| 136 |
+
" Missing JPG files for: Image_15, Image_21\n",
|
| 137 |
+
" Non-JPG/XML files: Image_15.JPG, Image_21.JPG\n",
|
| 138 |
+
"Class 'tomato_annotated': Perfect\n",
|
| 139 |
+
"Class 'vanilla_ice_cream_annotated': Discrepancies Found\n",
|
| 140 |
+
" Missing JPG files for: Image_12, Image_15, Image_17, Image_20\n",
|
| 141 |
+
" Non-JPG/XML files: Image_12.JPG, Image_15.JPG, Image_17.JPG, Image_20.JPG\n",
|
| 142 |
+
"Class 'walnuts_annotated': Perfect\n",
|
| 143 |
+
"Class 'watermelon_annotated': Perfect\n",
|
| 144 |
+
"Class 'yogurt_annotated': Perfect\n"
|
| 145 |
+
]
|
| 146 |
+
}
|
| 147 |
+
],
|
| 148 |
+
"source": [
|
| 149 |
+
"\n",
|
| 150 |
+
"\n",
|
| 151 |
+
"def check_dataset_integrity(dataset_directory):\n",
|
| 152 |
+
" for class_name in os.listdir(dataset_directory):\n",
|
| 153 |
+
" class_path = os.path.join(dataset_directory, class_name)\n",
|
| 154 |
+
" if os.path.isdir(class_path):\n",
|
| 155 |
+
" jpg_files = set()\n",
|
| 156 |
+
" xml_files = set()\n",
|
| 157 |
+
" other_files = set()\n",
|
| 158 |
+
"\n",
|
| 159 |
+
" # Collect file names for each extension\n",
|
| 160 |
+
" for file_name in os.listdir(class_path):\n",
|
| 161 |
+
" if file_name.endswith('.jpg'):\n",
|
| 162 |
+
" jpg_files.add(os.path.splitext(file_name)[0])\n",
|
| 163 |
+
" elif file_name.endswith('.xml'):\n",
|
| 164 |
+
" xml_files.add(os.path.splitext(file_name)[0])\n",
|
| 165 |
+
" else:\n",
|
| 166 |
+
" other_files.add(file_name)\n",
|
| 167 |
+
"\n",
|
| 168 |
+
" # Check for discrepancies\n",
|
| 169 |
+
" missing_xmls = jpg_files - xml_files\n",
|
| 170 |
+
" missing_jpgs = xml_files - jpg_files\n",
|
| 171 |
+
" is_perfect = len(missing_xmls) == 0 and len(missing_jpgs) == 0 and len(other_files) == 0\n",
|
| 172 |
+
"\n",
|
| 173 |
+
" # Report\n",
|
| 174 |
+
" print(f\"Class '{class_name}':\", \"Perfect\" if is_perfect else \"Discrepancies Found\")\n",
|
| 175 |
+
" if missing_xmls:\n",
|
| 176 |
+
" print(f\" Missing XML files for: {', '.join(sorted(missing_xmls))}\")\n",
|
| 177 |
+
" if missing_jpgs:\n",
|
| 178 |
+
" print(f\" Missing JPG files for: {', '.join(sorted(missing_jpgs))}\")\n",
|
| 179 |
+
" if other_files:\n",
|
| 180 |
+
" print(f\" Non-JPG/XML files: {', '.join(sorted(other_files))}\")\n",
|
| 181 |
+
" else:\n",
|
| 182 |
+
" print(f\"'{class_name}' is not a directory. Skipping.\")\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"# Specify the path to the dataset directory\n",
|
| 185 |
+
"dataset_directory = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated'\n",
|
| 186 |
+
"check_dataset_integrity(dataset_directory)\n"
|
| 187 |
+
]
|
| 188 |
+
},
|
| 189 |
+
{
|
| 190 |
+
"cell_type": "code",
|
| 191 |
+
"execution_count": 4,
|
| 192 |
+
"metadata": {},
|
| 193 |
+
"outputs": [],
|
| 194 |
+
"source": [
|
| 195 |
+
"import os\n",
|
| 196 |
+
"\n",
|
| 197 |
+
"def count_files_in_classes(dataset_directory):\n",
|
| 198 |
+
" # Iterate over all items in dataset_directory\n",
|
| 199 |
+
" for item in os.listdir(dataset_directory):\n",
|
| 200 |
+
" item_path = os.path.join(dataset_directory, item)\n",
|
| 201 |
+
" # Check if the item is a directory\n",
|
| 202 |
+
" if os.path.isdir(item_path):\n",
|
| 203 |
+
" # List all files in the directory\n",
|
| 204 |
+
" files = [f for f in os.listdir(item_path) if os.path.isfile(os.path.join(item_path, f))]\n",
|
| 205 |
+
" # Print the count of files\n",
|
| 206 |
+
" if len(files) < 100:\n",
|
| 207 |
+
" print(f\"{item}: {len(files)} files\")\n",
|
| 208 |
+
"\n",
|
| 209 |
+
"dataset_directory = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated'\n",
|
| 210 |
+
"count_files_in_classes(dataset_directory)\n"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": 5,
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [
|
| 218 |
+
{
|
| 219 |
+
"name": "stdout",
|
| 220 |
+
"output_type": "stream",
|
| 221 |
+
"text": [
|
| 222 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\all_purpose_flour_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\all_purpose_flour'.\n",
|
| 223 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\almonds_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\almonds'.\n",
|
| 224 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\apple_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\apple'.\n",
|
| 225 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\apricot_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\apricot'.\n",
|
| 226 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\asparagus_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\asparagus'.\n",
|
| 227 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\avocado_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\avocado'.\n",
|
| 228 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\bacon_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\bacon'.\n",
|
| 229 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\banana_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\banana'.\n",
|
| 230 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\barley_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\barley'.\n",
|
| 231 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\basil_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\basil'.\n",
|
| 232 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\basmati_rice_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\basmati_rice'.\n",
|
| 233 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\beans_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\beans'.\n",
|
| 234 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\beef_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\beef'.\n",
|
| 235 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\beets_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\beets'.\n",
|
| 236 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\bell_pepper_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\bell_pepper'.\n",
|
| 237 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\berries_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\berries'.\n",
|
| 238 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\biscuits_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\biscuits'.\n",
|
| 239 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\blackberries_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\blackberries'.\n",
|
| 240 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\black_pepper_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\black_pepper'.\n",
|
| 241 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\blueberries_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\blueberries'.\n",
|
| 242 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\bread_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\bread'.\n",
|
| 243 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\bread_crumbs_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\bread_crumbs'.\n",
|
| 244 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\bread_flour_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\bread_flour'.\n",
|
| 245 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\broccoli_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\broccoli'.\n",
|
| 246 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\brownie_mix_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\brownie_mix'.\n",
|
| 247 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\brown_rice_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\brown_rice'.\n",
|
| 248 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\butter_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\butter'.\n",
|
| 249 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cabbage_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cabbage'.\n",
|
| 250 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cake_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cake'.\n",
|
| 251 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cardamom_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cardamom'.\n",
|
| 252 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\carrot_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\carrot'.\n",
|
| 253 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cashews_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cashews'.\n",
|
| 254 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cauliflower_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cauliflower'.\n",
|
| 255 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\celery_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\celery'.\n",
|
| 256 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cereal_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cereal'.\n",
|
| 257 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cheese_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cheese'.\n",
|
| 258 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cherries_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cherries'.\n",
|
| 259 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\chicken_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\chicken'.\n",
|
| 260 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\chickpeas_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\chickpeas'.\n",
|
| 261 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\chocolate_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\chocolate'.\n",
|
| 262 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\chocolate_chips_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\chocolate_chips'.\n",
|
| 263 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\chocolate_syrup_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\chocolate_syrup'.\n",
|
| 264 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cilantro_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cilantro'.\n",
|
| 265 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cinnamon_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cinnamon'.\n",
|
| 266 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\clove_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\clove'.\n",
|
| 267 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cocoa_powder_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cocoa_powder'.\n",
|
| 268 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\coconut_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\coconut'.\n",
|
| 269 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cookies_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cookies'.\n",
|
| 270 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\corn_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\corn'.\n",
|
| 271 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cucumber_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\cucumber'.\n",
|
| 272 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\dates_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\dates'.\n",
|
| 273 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\eggplant_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\eggplant'.\n",
|
| 274 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\eggs_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\eggs'.\n",
|
| 275 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\fish_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\fish'.\n",
|
| 276 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\garlic_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\garlic'.\n",
|
| 277 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\ginger_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\ginger'.\n",
|
| 278 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\grapes_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\grapes'.\n",
|
| 279 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\honey_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\honey'.\n",
|
| 280 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\jalapeno_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\jalapeno'.\n",
|
| 281 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\kidney_beans_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\kidney_beans'.\n",
|
| 282 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\lemon_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\lemon'.\n",
|
| 283 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\mango_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\mango'.\n",
|
| 284 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\marshmallows_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\marshmallows'.\n",
|
| 285 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\milk_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\milk'.\n",
|
| 286 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\mint_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\mint'.\n",
|
| 287 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\muffins_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\muffins'.\n",
|
| 288 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\mushroom_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\mushroom'.\n",
|
| 289 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\noodles_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\noodles'.\n",
|
| 290 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\nuts_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\nuts'.\n",
|
| 291 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\oats_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\oats'.\n",
|
| 292 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\okra_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\okra'.\n",
|
| 293 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\olive_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\olive'.\n",
|
| 294 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\onion_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\onion'.\n",
|
| 295 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\orange_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\orange'.\n",
|
| 296 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\oreo_cookies_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\oreo_cookies'.\n",
|
| 297 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pasta_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pasta'.\n",
|
| 298 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pear_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pear'.\n",
|
| 299 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pepper_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pepper'.\n",
|
| 300 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pineapple_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pineapple'.\n",
|
| 301 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pistachios_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pistachios'.\n",
|
| 302 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pork_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pork'.\n",
|
| 303 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\potato_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\potato'.\n",
|
| 304 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pumpkin_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\pumpkin'.\n",
|
| 305 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\radishes_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\radishes'.\n",
|
| 306 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\raisins_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\raisins'.\n",
|
| 307 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\red_chilies_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\red_chilies'.\n",
|
| 308 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\rice_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\rice'.\n",
|
| 309 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\rosemary_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\rosemary'.\n",
|
| 310 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\salmon_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\salmon'.\n",
|
| 311 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\salt_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\salt'.\n",
|
| 312 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\shrimp_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\shrimp'.\n",
|
| 313 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\spinach_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\spinach'.\n",
|
| 314 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\strawberries_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\strawberries'.\n",
|
| 315 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\sugar_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\sugar'.\n",
|
| 316 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\sweet_potato_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\sweet_potato'.\n",
|
| 317 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\tomato_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\tomato'.\n",
|
| 318 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\vanilla_ice_cream_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\vanilla_ice_cream'.\n",
|
| 319 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\walnuts_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\walnuts'.\n",
|
| 320 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\watermelon_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\watermelon'.\n",
|
| 321 |
+
"Renamed 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\yogurt_annotated' to 'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated\\yogurt'.\n",
|
| 322 |
+
"Directory renaming completed.\n"
|
| 323 |
+
]
|
| 324 |
+
}
|
| 325 |
+
],
|
| 326 |
+
"source": [
|
| 327 |
+
"def rename_directories(base_dir):\n",
|
| 328 |
+
" for dirname in os.listdir(base_dir):\n",
|
| 329 |
+
" if dirname.endswith('_annotated'):\n",
|
| 330 |
+
" original_dir_path = os.path.join(base_dir, dirname)\n",
|
| 331 |
+
" new_dirname = dirname.replace('_annotated', '')\n",
|
| 332 |
+
" new_dir_path = os.path.join(base_dir, new_dirname)\n",
|
| 333 |
+
" \n",
|
| 334 |
+
" # Check if the target directory already exists\n",
|
| 335 |
+
" if os.path.exists(new_dir_path):\n",
|
| 336 |
+
" print(f\"Target directory '{new_dir_path}' already exists. Skipping '{dirname}'.\")\n",
|
| 337 |
+
" continue\n",
|
| 338 |
+
" \n",
|
| 339 |
+
" os.rename(original_dir_path, new_dir_path)\n",
|
| 340 |
+
" print(f\"Renamed '{original_dir_path}' to '{new_dir_path}'.\")\n",
|
| 341 |
+
"\n",
|
| 342 |
+
"# Specify the base directory containing the class directories to be renamed\n",
|
| 343 |
+
"base_dir = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated'\n",
|
| 344 |
+
"rename_directories(base_dir)\n",
|
| 345 |
+
"\n",
|
| 346 |
+
"print(\"Directory renaming completed.\")\n"
|
| 347 |
+
]
|
| 348 |
+
},
|
| 349 |
+
{
|
| 350 |
+
"cell_type": "code",
|
| 351 |
+
"execution_count": 7,
|
| 352 |
+
"metadata": {},
|
| 353 |
+
"outputs": [
|
| 354 |
+
{
|
| 355 |
+
"name": "stdout",
|
| 356 |
+
"output_type": "stream",
|
| 357 |
+
"text": [
|
| 358 |
+
"Class 'all_purpose_flour': Perfect\n",
|
| 359 |
+
"Class 'almonds': Perfect\n",
|
| 360 |
+
"Class 'apple': Perfect\n",
|
| 361 |
+
"Class 'apricot': Perfect\n",
|
| 362 |
+
"Class 'asparagus': Perfect\n",
|
| 363 |
+
"Class 'avocado': Perfect\n",
|
| 364 |
+
"Class 'bacon': Perfect\n",
|
| 365 |
+
"Class 'banana': Perfect\n",
|
| 366 |
+
"Class 'barley': Perfect\n",
|
| 367 |
+
"Class 'basil': Perfect\n",
|
| 368 |
+
"Class 'basmati_rice': Perfect\n",
|
| 369 |
+
"Class 'beans': Perfect\n",
|
| 370 |
+
"Class 'beef': Perfect\n",
|
| 371 |
+
"Class 'beets': Perfect\n",
|
| 372 |
+
"Class 'bell_pepper': Perfect\n",
|
| 373 |
+
"Class 'berries': Perfect\n",
|
| 374 |
+
"Class 'biscuits': Perfect\n",
|
| 375 |
+
"Class 'blackberries': Perfect\n",
|
| 376 |
+
"Class 'black_pepper': Perfect\n",
|
| 377 |
+
"Class 'blueberries': Perfect\n",
|
| 378 |
+
"Class 'bread': Perfect\n",
|
| 379 |
+
"Class 'bread_crumbs': Perfect\n",
|
| 380 |
+
"Class 'bread_flour': Perfect\n",
|
| 381 |
+
"Class 'broccoli': Perfect\n",
|
| 382 |
+
"Class 'brownie_mix': Perfect\n",
|
| 383 |
+
"Class 'brown_rice': Perfect\n",
|
| 384 |
+
"Class 'butter': Perfect\n",
|
| 385 |
+
"Class 'cabbage': Perfect\n",
|
| 386 |
+
"Class 'cake': Perfect\n",
|
| 387 |
+
"Class 'cardamom': Perfect\n",
|
| 388 |
+
"Class 'carrot': Perfect\n",
|
| 389 |
+
"Class 'cashews': Perfect\n",
|
| 390 |
+
"Class 'cauliflower': Perfect\n",
|
| 391 |
+
"Class 'celery': Perfect\n",
|
| 392 |
+
"Class 'cereal': Perfect\n",
|
| 393 |
+
"Class 'cheese': Perfect\n",
|
| 394 |
+
"Class 'cherries': Perfect\n",
|
| 395 |
+
"Class 'chicken': Perfect\n",
|
| 396 |
+
"Class 'chickpeas': Perfect\n",
|
| 397 |
+
"Class 'chocolate': Perfect\n",
|
| 398 |
+
"Class 'chocolate_chips': Perfect\n",
|
| 399 |
+
"Class 'chocolate_syrup': Perfect\n",
|
| 400 |
+
"Class 'cilantro': Perfect\n",
|
| 401 |
+
"Class 'cinnamon': Perfect\n",
|
| 402 |
+
"Class 'clove': Perfect\n",
|
| 403 |
+
"Class 'cocoa_powder': Perfect\n",
|
| 404 |
+
"Class 'coconut': Perfect\n",
|
| 405 |
+
"Class 'cookies': Perfect\n",
|
| 406 |
+
"Class 'corn': Perfect\n",
|
| 407 |
+
"Class 'cucumber': Perfect\n",
|
| 408 |
+
"Class 'dates': Perfect\n",
|
| 409 |
+
"Class 'eggplant': Perfect\n",
|
| 410 |
+
"Class 'eggs': Perfect\n",
|
| 411 |
+
"Class 'fish': Perfect\n",
|
| 412 |
+
"Class 'garlic': Perfect\n",
|
| 413 |
+
"Class 'ginger': Perfect\n",
|
| 414 |
+
"Class 'grapes': Perfect\n",
|
| 415 |
+
"Class 'honey': Perfect\n",
|
| 416 |
+
"Class 'jalapeno': Perfect\n",
|
| 417 |
+
"Class 'kidney_beans': Perfect\n",
|
| 418 |
+
"Class 'lemon': Perfect\n",
|
| 419 |
+
"Class 'mango': Perfect\n",
|
| 420 |
+
"Class 'marshmallows': Perfect\n",
|
| 421 |
+
"Class 'milk': Perfect\n",
|
| 422 |
+
"Class 'mint': Perfect\n",
|
| 423 |
+
"Class 'muffins': Perfect\n",
|
| 424 |
+
"Class 'mushroom': Perfect\n",
|
| 425 |
+
"Class 'noodles': Perfect\n",
|
| 426 |
+
"Class 'nuts': Perfect\n",
|
| 427 |
+
"Class 'oats': Perfect\n",
|
| 428 |
+
"Class 'okra': Perfect\n",
|
| 429 |
+
"Class 'olive': Perfect\n",
|
| 430 |
+
"Class 'onion': Perfect\n",
|
| 431 |
+
"Class 'orange': Perfect\n",
|
| 432 |
+
"Class 'oreo_cookies': Perfect\n",
|
| 433 |
+
"Class 'pasta': Perfect\n",
|
| 434 |
+
"Class 'pear': Perfect\n",
|
| 435 |
+
"Class 'pepper': Perfect\n",
|
| 436 |
+
"Class 'pineapple': Perfect\n",
|
| 437 |
+
"Class 'pistachios': Perfect\n",
|
| 438 |
+
"Class 'pork': Perfect\n",
|
| 439 |
+
"Class 'potato': Perfect\n",
|
| 440 |
+
"Class 'pumpkin': Perfect\n",
|
| 441 |
+
"Class 'radishes': Perfect\n",
|
| 442 |
+
"Class 'raisins': Perfect\n",
|
| 443 |
+
"Class 'red_chilies': Perfect\n",
|
| 444 |
+
"Class 'rice': Perfect\n",
|
| 445 |
+
"Class 'rosemary': Perfect\n",
|
| 446 |
+
"Class 'salmon': Perfect\n",
|
| 447 |
+
"Class 'salt': Perfect\n",
|
| 448 |
+
"Class 'shrimp': Perfect\n",
|
| 449 |
+
"Class 'spinach': Perfect\n",
|
| 450 |
+
"Class 'strawberries': Perfect\n",
|
| 451 |
+
"Class 'sugar': Perfect\n",
|
| 452 |
+
"Class 'sweet_potato': Perfect\n",
|
| 453 |
+
"Class 'tomato': Perfect\n",
|
| 454 |
+
"Class 'vanilla_ice_cream': Perfect\n",
|
| 455 |
+
"Class 'walnuts': Perfect\n",
|
| 456 |
+
"Class 'watermelon': Perfect\n",
|
| 457 |
+
"Class 'yogurt': Perfect\n"
|
| 458 |
+
]
|
| 459 |
+
}
|
| 460 |
+
],
|
| 461 |
+
"source": [
|
| 462 |
+
"\n",
|
| 463 |
+
"\n",
|
| 464 |
+
"def check_dataset_integrity(dataset_directory):\n",
|
| 465 |
+
" for class_name in os.listdir(dataset_directory):\n",
|
| 466 |
+
" class_path = os.path.join(dataset_directory, class_name)\n",
|
| 467 |
+
" if os.path.isdir(class_path):\n",
|
| 468 |
+
" jpg_files = set()\n",
|
| 469 |
+
" xml_files = set()\n",
|
| 470 |
+
" other_files = set()\n",
|
| 471 |
+
"\n",
|
| 472 |
+
" # Collect file names for each extension\n",
|
| 473 |
+
" for file_name in os.listdir(class_path):\n",
|
| 474 |
+
" if file_name.endswith('.jpg'):\n",
|
| 475 |
+
" jpg_files.add(os.path.splitext(file_name)[0])\n",
|
| 476 |
+
" elif file_name.endswith('.xml'):\n",
|
| 477 |
+
" xml_files.add(os.path.splitext(file_name)[0])\n",
|
| 478 |
+
" else:\n",
|
| 479 |
+
" other_files.add(file_name)\n",
|
| 480 |
+
"\n",
|
| 481 |
+
" # Check for discrepancies\n",
|
| 482 |
+
" missing_xmls = jpg_files - xml_files\n",
|
| 483 |
+
" missing_jpgs = xml_files - jpg_files\n",
|
| 484 |
+
" is_perfect = len(missing_xmls) == 0 and len(missing_jpgs) == 0 and len(other_files) == 0\n",
|
| 485 |
+
"\n",
|
| 486 |
+
" # Report\n",
|
| 487 |
+
" print(f\"Class '{class_name}':\", \"Perfect\" if is_perfect else \"Discrepancies Found\")\n",
|
| 488 |
+
" if missing_xmls:\n",
|
| 489 |
+
" print(f\" Missing XML files for: {', '.join(sorted(missing_xmls))}\")\n",
|
| 490 |
+
" if missing_jpgs:\n",
|
| 491 |
+
" print(f\" Missing JPG files for: {', '.join(sorted(missing_jpgs))}\")\n",
|
| 492 |
+
" if other_files:\n",
|
| 493 |
+
" print(f\" Non-JPG/XML files: {', '.join(sorted(other_files))}\")\n",
|
| 494 |
+
" else:\n",
|
| 495 |
+
" print(f\"'{class_name}' is not a directory. Skipping.\")\n",
|
| 496 |
+
"\n",
|
| 497 |
+
"# Specify the path to the dataset directory\n",
|
| 498 |
+
"dataset_directory = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated'\n",
|
| 499 |
+
"check_dataset_integrity(dataset_directory)\n"
|
| 500 |
+
]
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"cell_type": "code",
|
| 504 |
+
"execution_count": 6,
|
| 505 |
+
"metadata": {},
|
| 506 |
+
"outputs": [
|
| 507 |
+
{
|
| 508 |
+
"name": "stdout",
|
| 509 |
+
"output_type": "stream",
|
| 510 |
+
"text": [
|
| 511 |
+
"All class names from 'Final_classes.txt' match the dataset directories perfectly.\n"
|
| 512 |
+
]
|
| 513 |
+
}
|
| 514 |
+
],
|
| 515 |
+
"source": [
|
| 516 |
+
"import os\n",
|
| 517 |
+
"\n",
|
| 518 |
+
"# Path to the directory containing the class directories\n",
|
| 519 |
+
"dataset_dir = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\initial_data_annotated'\n",
|
| 520 |
+
"\n",
|
| 521 |
+
"# Path to the file containing the final class names\n",
|
| 522 |
+
"classes_file = r'C:\\Users\\Kiyo\\Desktop\\DL\\Project\\image_data\\Final_classes.txt'\n",
|
| 523 |
+
"\n",
|
| 524 |
+
"# Load class names from file\n",
|
| 525 |
+
"with open(classes_file, 'r') as f:\n",
|
| 526 |
+
" class_names = {line.strip() for line in f}\n",
|
| 527 |
+
"\n",
|
| 528 |
+
"# List directory names in the dataset\n",
|
| 529 |
+
"dataset_dirs = {d for d in os.listdir(dataset_dir) if os.path.isdir(os.path.join(dataset_dir, d))}\n",
|
| 530 |
+
"\n",
|
| 531 |
+
"# Find discrepancies\n",
|
| 532 |
+
"missing_dirs = class_names - dataset_dirs\n",
|
| 533 |
+
"extra_dirs = dataset_dirs - class_names\n",
|
| 534 |
+
"\n",
|
| 535 |
+
"# Report results\n",
|
| 536 |
+
"if not missing_dirs and not extra_dirs:\n",
|
| 537 |
+
" print(\"All class names from 'Final_classes.txt' match the dataset directories perfectly.\")\n",
|
| 538 |
+
"else:\n",
|
| 539 |
+
" if missing_dirs:\n",
|
| 540 |
+
" print(f\"Missing directories for these classes: {', '.join(sorted(missing_dirs))}\")\n",
|
| 541 |
+
" if extra_dirs:\n",
|
| 542 |
+
" print(f\"Extra directories in the dataset not listed in 'Final_classes.txt': {', '.join(sorted(extra_dirs))}\")\n"
|
| 543 |
+
]
|
| 544 |
+
}
|
| 545 |
+
],
|
| 546 |
+
"metadata": {
|
| 547 |
+
"kernelspec": {
|
| 548 |
+
"display_name": "Python 3",
|
| 549 |
+
"language": "python",
|
| 550 |
+
"name": "python3"
|
| 551 |
+
},
|
| 552 |
+
"language_info": {
|
| 553 |
+
"codemirror_mode": {
|
| 554 |
+
"name": "ipython",
|
| 555 |
+
"version": 3
|
| 556 |
+
},
|
| 557 |
+
"file_extension": ".py",
|
| 558 |
+
"mimetype": "text/x-python",
|
| 559 |
+
"name": "python",
|
| 560 |
+
"nbconvert_exporter": "python",
|
| 561 |
+
"pygments_lexer": "ipython3",
|
| 562 |
+
"version": "3.12.1"
|
| 563 |
+
}
|
| 564 |
+
},
|
| 565 |
+
"nbformat": 4,
|
| 566 |
+
"nbformat_minor": 2
|
| 567 |
+
}
|