File size: 5,750 Bytes
9e6b5f7
5153694
 
 
 
 
 
 
 
 
 
 
 
 
9e6b5f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5153694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
license: cc-by-nc-4.0
task_categories:
  - image-segmentation
language:
  - en
tags:
  - reasoning
  - zero-shot
  - reinforcement-learning
  - multi-modal
  - VLM
size_categories:
  - n<1K
dataset_info:
  features:
  - name: image
    dtype: image
  - name: text
    dtype: string
  - name: mask
    sequence:
      sequence: bool
  - name: image_id
    dtype: string
  - name: ann_id
    dtype: string
  - name: img_height
    dtype: int64
  - name: img_width
    dtype: int64
  splits:
  - name: test
    num_bytes: 1666685613.0
    num_examples: 779
  download_size: 1235514015
  dataset_size: 1666685613.0
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
---

# ReasonSeg Test Dataset

This repository contains the **ReasonSeg Test Dataset**, which serves as an evaluation benchmark for the paper [Seg-Zero: Reasoning-Chain Guided Segmentation via Cognitive Reinforcement](https://arxiv.org/abs/2503.06520).

**Code:** [https://github.com/dvlab-research/Seg-Zero](https://github.com/dvlab-research/Seg-Zero)

## Paper Abstract

Traditional methods for reasoning segmentation rely on supervised fine-tuning with categorical labels and simple descriptions, limiting its out-of-domain generalization and lacking explicit reasoning processes. To address these limitations, we propose Seg-Zero, a novel framework that demonstrates remarkable generalizability and derives explicit chain-of-thought reasoning through cognitive reinforcement. Seg-Zero introduces a decoupled architecture consisting of a reasoning model and a segmentation model. The reasoning model interprets user intentions, generates explicit reasoning chains, and produces positional prompts, which are subsequently used by the segmentation model to generate precious pixel-level masks. We design a sophisticated reward mechanism that integrates both format and accuracy rewards to effectively guide optimization directions. Trained exclusively via reinforcement learning with GRPO and without explicit reasoning data, Seg-Zero achieves robust zero-shot generalization and exhibits emergent test-time reasoning capabilities. Experiments show that Seg-Zero-7B achieves a zero-shot performance of 57.5 on the ReasonSeg benchmark, surpassing the prior LISA-7B by 18%. This significant improvement highlights Seg-Zero's ability to generalize across domains while presenting an explicit reasoning process.

## About Seg-Zero

Seg-Zero is a novel framework for reasoning segmentation that utilizes cognitive reinforcement to achieve remarkable generalizability and explicit chain-of-thought reasoning.

<div align=center>
<img width="98%" src="https://github.com/dvlab-research/Seg-Zero/raw/main/assets/overview.png"/>
</div>

Seg-Zero demonstrates the following features:
1.  Seg-Zero exhibits emergent test-time reasoning ability. It generates a reasoning chain before producing the final segmentation mask.
2.  Seg-Zero is trained exclusively using reinforcement learning, without any explicit supervised reasoning data.
3.  Compared to supervised fine-tuning, our Seg-Zero achieves superior performance on both in-domain and out-of-domain data.

### Model Pipeline

Seg-Zero employs a decoupled architecture, including a reasoning model and segmentation model. A sophisticated reward mechanism integrates both format and accuracy rewards.

<div align=center>
<img width="98%" src="https://github.com/dvlab-research/Seg-Zero/raw/main/assets/pipeline.png"/>
</div>

### Examples

<div align=center>
<img width="98%" src="https://github.com/dvlab-research/Seg-Zero/raw/main/assets/examples.png"/>
</div>

## Sample Usage: Evaluation

This dataset (`ReasonSeg-Test`) is designed for evaluating the zero-shot performance of models like Seg-Zero on reasoning-based image segmentation tasks.

First, install the necessary dependencies for the Seg-Zero project:

```bash
git clone https://github.com/dvlab-research/Seg-Zero.git
cd Seg-Zero
conda create -n visionreasoner python=3.12
conda activate visionreasoner
pip install torch==2.6.0 torchvision==0.21.0
pip install -e .
```

Then, you can run evaluation using the provided scripts. Make sure to download pretrained models first:

```bash
mkdir pretrained_models
cd pretrained_models
git lfs install
git clone https://huggingface.co/Ricky06662/VisionReasoner-7B
```

With the pretrained models downloaded, you can run the evaluation script for ReasonSeg:

```bash
bash evaluation_scripts/eval_reasonseg_visionreasoner.sh
```

Adjust `'--batch_size'` in the bash scripts based on your GPU. You will see the gIoU in your command line.

<div align=center>
<img width="98%" src="https://github.com/dvlab-research/Seg-Zero/raw/main/assets/val_results.png"/>
</div>

## The GRPO Algorithm

Seg-Zero generates several samples, calculates the rewards and then optimizes towards samples that achieve higher rewards.

<div align=center>
<img width="48%" src="https://github.com/dvlab-research/Seg-Zero/raw/main/assets/rl_sample.png"/>
</div>

## Citation

If you use this dataset or the Seg-Zero framework, please cite the associated papers:

```bibtex
@article{liu2025segzero,
  title        = {Seg-Zero: Reasoning-Chain Guided  Segmentation via Cognitive Reinforcement},
  author       = {Liu, Yuqi and Peng, Bohao and Zhong, Zhisheng and Yue, Zihao and Lu, Fanbin and Yu, Bei and Jia, Jiaya},
  journal      = {arXiv preprint arXiv:2503.06520},
  year         = {2025}
}

@article{liu2025visionreasoner,
  title        = {VisionReasoner: Unified Visual Perception and Reasoning via Reinforcement Learning},
  author       = {Liu, Yuqi and Qu, Tianyuan and Zhong, Zhisheng and Peng, Bohao and Liu, Shu and Yu, Bei and Jia, Jiaya},
  journal = {arXiv preprint arXiv:2505.12081},
  year         = {2025}
}
```