--- dataset_info: features: - name: cid dtype: int64 - name: smiles dtype: string - name: molecule_fp sequence: sequence: int32 - name: selfies dtype: string - name: instruction dtype: string - name: input dtype: string splits: - name: validation num_bytes: 5814884 num_examples: 3301 - name: test num_bytes: 5671766 num_examples: 3300 - name: train num_bytes: 46496406 num_examples: 26407 download_size: 15941579 dataset_size: 57983056 configs: - config_name: default data_files: - split: validation path: data/validation-* - split: test path: data/test-* - split: train path: data/train-* --- ## 3D-MolT5: Leveraging Discrete Structural Information for Molecule-Text Modeling For more information, please refer to our paper and GitHub repository. Paper: [arxiv](https://arxiv.org/abs/2406.05797), [openreview](https://openreview.net/forum?id=eGqQyTAbXC) GitHub: [3D-MolT5](https://github.com/QizhiPei/3D-MolT5) Authors: *Qizhi Pei, Rui Yan, Kaiyuan Gao, Jinhua Zhu and Lijun Wu*