Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Languages:
English
Size:
10K - 100K
License:
File size: 11,458 Bytes
49b6313 b778a0d 49b6313 b778a0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
---
license: cc-by-nc-sa-4.0
task_categories:
- text-classification
language:
- en
tags:
- Disaster
- Crisis Informatics
pretty_name: 'HumAID: Human-Annotated Disaster Incidents Data from Twitter -- Event wise dataset'
size_categories:
- 10K<n<100K
dataset_info:
- config_name: hurricane_florence_2018
splits:
- name: train
num_examples: 4384
- name: dev
num_examples: 639
- name: test
num_examples: 1241
- config_name: kaikoura_earthquake_2016
splits:
- name: train
num_examples: 1536
- name: dev
num_examples: 224
- name: test
num_examples: 435
- config_name: kerala_floods_2018
splits:
- name: train
num_examples: 5588
- name: dev
num_examples: 814
- name: test
num_examples: 1582
- config_name: hurricane_harvey_2017
splits:
- name: train
num_examples: 6378
- name: dev
num_examples: 929
- name: test
num_examples: 1805
- config_name: hurricane_maria_2017
splits:
- name: train
num_examples: 5094
- name: dev
num_examples: 742
- name: test
num_examples: 1442
- config_name: midwestern_us_floods_2019
splits:
- name: train
num_examples: 1316
- name: dev
num_examples: 191
- name: test
num_examples: 373
- config_name: puebla_mexico_earthquake_2017
splits:
- name: train
num_examples: 1410
- name: dev
num_examples: 205
- name: test
num_examples: 400
- config_name: maryland_floods_2018
splits:
- name: train
num_examples: 519
- name: dev
num_examples: 75
- name: test
num_examples: 148
- config_name: hurricane_irma_2017
splits:
- name: train
num_examples: 6579
- name: dev
num_examples: 958
- name: test
num_examples: 1862
- config_name: ecuador_earthquake_2016
splits:
- name: train
num_examples: 1094
- name: dev
num_examples: 159
- name: test
num_examples: 310
- config_name: cyclone_idai_2019
splits:
- name: train
num_examples: 2753
- name: dev
num_examples: 401
- name: test
num_examples: 779
- config_name: canada_wildfires_2016
splits:
- name: train
num_examples: 1569
- name: dev
num_examples: 228
- name: test
num_examples: 445
- config_name: italy_earthquake_aug_2016
splits:
- name: train
num_examples: 840
- name: dev
num_examples: 122
- name: test
num_examples: 239
- config_name: greece_wildfires_2018
splits:
- name: train
num_examples: 1060
- name: dev
num_examples: 154
- name: test
num_examples: 301
- config_name: hurricane_dorian_2019
splits:
- name: train
num_examples: 5329
- name: dev
num_examples: 776
- name: test
num_examples: 1508
- config_name: .git
splits:
- name: train
num_examples: 0
- name: dev
num_examples: 0
- name: test
num_examples: 0
- config_name: california_wildfires_2018
splits:
- name: train
num_examples: 5163
- name: dev
num_examples: 752
- name: test
num_examples: 1461
- config_name: pakistan_earthquake_2019
splits:
- name: train
num_examples: 1370
- name: dev
num_examples: 199
- name: test
num_examples: 389
- config_name: hurricane_matthew_2016
splits:
- name: train
num_examples: 1157
- name: dev
num_examples: 168
- name: test
num_examples: 329
- config_name: srilanka_floods_2017
splits:
- name: train
num_examples: 392
- name: dev
num_examples: 57
- name: test
num_examples: 111
configs:
- config_name: hurricane_florence_2018
data_files:
- split: train
path: hurricane_florence_2018/train.json
- split: dev
path: hurricane_florence_2018/dev.json
- split: test
path: hurricane_florence_2018/test.json
- config_name: kaikoura_earthquake_2016
data_files:
- split: train
path: kaikoura_earthquake_2016/train.json
- split: dev
path: kaikoura_earthquake_2016/dev.json
- split: test
path: kaikoura_earthquake_2016/test.json
- config_name: kerala_floods_2018
data_files:
- split: train
path: kerala_floods_2018/train.json
- split: dev
path: kerala_floods_2018/dev.json
- split: test
path: kerala_floods_2018/test.json
- config_name: hurricane_harvey_2017
data_files:
- split: train
path: hurricane_harvey_2017/train.json
- split: dev
path: hurricane_harvey_2017/dev.json
- split: test
path: hurricane_harvey_2017/test.json
- config_name: hurricane_maria_2017
data_files:
- split: train
path: hurricane_maria_2017/train.json
- split: dev
path: hurricane_maria_2017/dev.json
- split: test
path: hurricane_maria_2017/test.json
- config_name: midwestern_us_floods_2019
data_files:
- split: train
path: midwestern_us_floods_2019/train.json
- split: dev
path: midwestern_us_floods_2019/dev.json
- split: test
path: midwestern_us_floods_2019/test.json
- config_name: puebla_mexico_earthquake_2017
data_files:
- split: train
path: puebla_mexico_earthquake_2017/train.json
- split: dev
path: puebla_mexico_earthquake_2017/dev.json
- split: test
path: puebla_mexico_earthquake_2017/test.json
- config_name: maryland_floods_2018
data_files:
- split: train
path: maryland_floods_2018/train.json
- split: dev
path: maryland_floods_2018/dev.json
- split: test
path: maryland_floods_2018/test.json
- config_name: hurricane_irma_2017
data_files:
- split: train
path: hurricane_irma_2017/train.json
- split: dev
path: hurricane_irma_2017/dev.json
- split: test
path: hurricane_irma_2017/test.json
- config_name: ecuador_earthquake_2016
data_files:
- split: train
path: ecuador_earthquake_2016/train.json
- split: dev
path: ecuador_earthquake_2016/dev.json
- split: test
path: ecuador_earthquake_2016/test.json
- config_name: cyclone_idai_2019
data_files:
- split: train
path: cyclone_idai_2019/train.json
- split: dev
path: cyclone_idai_2019/dev.json
- split: test
path: cyclone_idai_2019/test.json
- config_name: canada_wildfires_2016
data_files:
- split: train
path: canada_wildfires_2016/train.json
- split: dev
path: canada_wildfires_2016/dev.json
- split: test
path: canada_wildfires_2016/test.json
- config_name: italy_earthquake_aug_2016
data_files:
- split: train
path: italy_earthquake_aug_2016/train.json
- split: dev
path: italy_earthquake_aug_2016/dev.json
- split: test
path: italy_earthquake_aug_2016/test.json
- config_name: greece_wildfires_2018
data_files:
- split: train
path: greece_wildfires_2018/train.json
- split: dev
path: greece_wildfires_2018/dev.json
- split: test
path: greece_wildfires_2018/test.json
- config_name: hurricane_dorian_2019
data_files:
- split: train
path: hurricane_dorian_2019/train.json
- split: dev
path: hurricane_dorian_2019/dev.json
- split: test
path: hurricane_dorian_2019/test.json
- config_name: california_wildfires_2018
data_files:
- split: train
path: california_wildfires_2018/train.json
- split: dev
path: california_wildfires_2018/dev.json
- split: test
path: california_wildfires_2018/test.json
- config_name: pakistan_earthquake_2019
data_files:
- split: train
path: pakistan_earthquake_2019/train.json
- split: dev
path: pakistan_earthquake_2019/dev.json
- split: test
path: pakistan_earthquake_2019/test.json
- config_name: hurricane_matthew_2016
data_files:
- split: train
path: hurricane_matthew_2016/train.json
- split: dev
path: hurricane_matthew_2016/dev.json
- split: test
path: hurricane_matthew_2016/test.json
- config_name: srilanka_floods_2017
data_files:
- split: train
path: srilanka_floods_2017/train.json
- split: dev
path: srilanka_floods_2017/dev.json
- split: test
path: srilanka_floods_2017/test.json
---
# HumAID: Human-Annotated Disaster Incidents Data from Twitter
## Dataset Description
- **Homepage:** https://crisisnlp.qcri.org/humaid_dataset
- **Repository:** https://crisisnlp.qcri.org/data/humaid/humaid_data_all.zip
- **Paper:** https://ojs.aaai.org/index.php/ICWSM/article/view/18116/17919
### Dataset Summary
The HumAID Twitter dataset consists of several thousands of manually annotated tweets that has been collected during 19 major natural disaster events including earthquakes, hurricanes, wildfires, and floods, which happened from 2016 to 2019 across different parts of the World. The annotations in the provided datasets consists of following humanitarian categories. The dataset consists only english tweets and it is the largest dataset for crisis informatics so far.
** Humanitarian categories **
- Caution and advice
- Displaced people and evacuations
- Dont know cant judge
- Infrastructure and utility damage
- Injured or dead people
- Missing or found people
- Not humanitarian
- Other relevant information
- Requests or urgent needs
- Rescue volunteering or donation effort
- Sympathy and support
The resulting annotated dataset consists of 11 labels.
### Supported Tasks and Benchmark
The dataset can be used to train a model for multiclass tweet classification for disaster response. The benchmark results can be found in https://ojs.aaai.org/index.php/ICWSM/article/view/18116/17919.
Dataset is also released with event-wise and JSON objects for further research.
Full set of the dataset can be found in https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/A7NVF7
### Languages
English
## Dataset Structure
### Data Instances
```
{
"tweet_text": "@RT_com: URGENT: Death toll in #Ecuador #quake rises to 233 \u2013 President #Correa #1 in #Pakistan",
"class_label": "injured_or_dead_people"
}
```
### Data Fields
* tweet_text: corresponds to the tweet text.
* class_label: corresponds to a label assigned to a given tweet text
### Data Splits
* Train
* Development
* Test
## Dataset Creation
Tweets has been collected during several disaster events.
### Annotations
AMT has been used to annotate the dataset. Please check the paper for a more detail.
#### Who are the annotators?
- crowdsourced
### Licensing Information
- cc-by-nc-4.0
### Citation Information
```
@inproceedings{humaid2020,
Author = {Firoj Alam, Umair Qazi, Muhammad Imran, Ferda Ofli},
booktitle={Proceedings of the Fifteenth International AAAI Conference on Web and Social Media},
series={ICWSM~'21},
Keywords = {Social Media, Crisis Computing, Tweet Text Classification, Disaster Response},
Title = {HumAID: Human-Annotated Disaster Incidents Data from Twitter},
Year = {2021},
publisher={AAAI},
address={Online},
}
```
|