Datasets:
QCRI
/

Modalities:
Text
Formats:
json
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 11,458 Bytes
49b6313
 
b778a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49b6313
b778a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
---

license: cc-by-nc-sa-4.0
task_categories:
  - text-classification
language:
  - en
tags:
- Disaster
- Crisis Informatics
pretty_name: 'HumAID: Human-Annotated Disaster Incidents Data from Twitter -- Event wise dataset'
size_categories:
  - 10K<n<100K
dataset_info:
- config_name: hurricane_florence_2018
  splits:
    - name: train
      num_examples: 4384
    - name: dev
      num_examples: 639
    - name: test
      num_examples: 1241
- config_name: kaikoura_earthquake_2016
  splits:
    - name: train
      num_examples: 1536
    - name: dev
      num_examples: 224
    - name: test
      num_examples: 435
- config_name: kerala_floods_2018
  splits:
    - name: train
      num_examples: 5588
    - name: dev
      num_examples: 814
    - name: test
      num_examples: 1582
- config_name: hurricane_harvey_2017
  splits:
    - name: train
      num_examples: 6378
    - name: dev
      num_examples: 929
    - name: test
      num_examples: 1805
- config_name: hurricane_maria_2017
  splits:
    - name: train
      num_examples: 5094
    - name: dev
      num_examples: 742
    - name: test
      num_examples: 1442
- config_name: midwestern_us_floods_2019
  splits:
    - name: train
      num_examples: 1316
    - name: dev
      num_examples: 191
    - name: test
      num_examples: 373
- config_name: puebla_mexico_earthquake_2017
  splits:
    - name: train
      num_examples: 1410
    - name: dev
      num_examples: 205
    - name: test
      num_examples: 400
- config_name: maryland_floods_2018
  splits:
    - name: train
      num_examples: 519
    - name: dev
      num_examples: 75
    - name: test
      num_examples: 148
- config_name: hurricane_irma_2017
  splits:
    - name: train
      num_examples: 6579
    - name: dev
      num_examples: 958
    - name: test
      num_examples: 1862
- config_name: ecuador_earthquake_2016
  splits:
    - name: train
      num_examples: 1094
    - name: dev
      num_examples: 159
    - name: test
      num_examples: 310
- config_name: cyclone_idai_2019
  splits:
    - name: train
      num_examples: 2753
    - name: dev
      num_examples: 401
    - name: test
      num_examples: 779
- config_name: canada_wildfires_2016
  splits:
    - name: train
      num_examples: 1569
    - name: dev
      num_examples: 228
    - name: test
      num_examples: 445
- config_name: italy_earthquake_aug_2016
  splits:
    - name: train
      num_examples: 840
    - name: dev
      num_examples: 122
    - name: test
      num_examples: 239
- config_name: greece_wildfires_2018
  splits:
    - name: train
      num_examples: 1060
    - name: dev
      num_examples: 154
    - name: test
      num_examples: 301
- config_name: hurricane_dorian_2019
  splits:
    - name: train
      num_examples: 5329
    - name: dev
      num_examples: 776
    - name: test
      num_examples: 1508
- config_name: .git
  splits:
    - name: train
      num_examples: 0
    - name: dev
      num_examples: 0
    - name: test
      num_examples: 0
- config_name: california_wildfires_2018
  splits:
    - name: train
      num_examples: 5163
    - name: dev
      num_examples: 752
    - name: test
      num_examples: 1461
- config_name: pakistan_earthquake_2019
  splits:
    - name: train
      num_examples: 1370
    - name: dev
      num_examples: 199
    - name: test
      num_examples: 389
- config_name: hurricane_matthew_2016
  splits:
    - name: train
      num_examples: 1157
    - name: dev
      num_examples: 168
    - name: test
      num_examples: 329
- config_name: srilanka_floods_2017
  splits:
    - name: train
      num_examples: 392
    - name: dev
      num_examples: 57
    - name: test
      num_examples: 111
configs:
- config_name: hurricane_florence_2018
  data_files:
    - split: train
      path: hurricane_florence_2018/train.json
    - split: dev
      path: hurricane_florence_2018/dev.json
    - split: test
      path: hurricane_florence_2018/test.json
- config_name: kaikoura_earthquake_2016
  data_files:
    - split: train
      path: kaikoura_earthquake_2016/train.json
    - split: dev
      path: kaikoura_earthquake_2016/dev.json
    - split: test
      path: kaikoura_earthquake_2016/test.json
- config_name: kerala_floods_2018
  data_files:
    - split: train
      path: kerala_floods_2018/train.json
    - split: dev
      path: kerala_floods_2018/dev.json
    - split: test
      path: kerala_floods_2018/test.json
- config_name: hurricane_harvey_2017
  data_files:
    - split: train
      path: hurricane_harvey_2017/train.json
    - split: dev
      path: hurricane_harvey_2017/dev.json
    - split: test
      path: hurricane_harvey_2017/test.json
- config_name: hurricane_maria_2017
  data_files:
    - split: train
      path: hurricane_maria_2017/train.json
    - split: dev
      path: hurricane_maria_2017/dev.json
    - split: test
      path: hurricane_maria_2017/test.json
- config_name: midwestern_us_floods_2019
  data_files:
    - split: train
      path: midwestern_us_floods_2019/train.json
    - split: dev
      path: midwestern_us_floods_2019/dev.json
    - split: test
      path: midwestern_us_floods_2019/test.json
- config_name: puebla_mexico_earthquake_2017
  data_files:
    - split: train
      path: puebla_mexico_earthquake_2017/train.json
    - split: dev
      path: puebla_mexico_earthquake_2017/dev.json
    - split: test
      path: puebla_mexico_earthquake_2017/test.json
- config_name: maryland_floods_2018
  data_files:
    - split: train
      path: maryland_floods_2018/train.json
    - split: dev
      path: maryland_floods_2018/dev.json
    - split: test
      path: maryland_floods_2018/test.json
- config_name: hurricane_irma_2017
  data_files:
    - split: train
      path: hurricane_irma_2017/train.json
    - split: dev
      path: hurricane_irma_2017/dev.json
    - split: test
      path: hurricane_irma_2017/test.json
- config_name: ecuador_earthquake_2016
  data_files:
    - split: train
      path: ecuador_earthquake_2016/train.json
    - split: dev
      path: ecuador_earthquake_2016/dev.json
    - split: test
      path: ecuador_earthquake_2016/test.json
- config_name: cyclone_idai_2019
  data_files:
    - split: train
      path: cyclone_idai_2019/train.json
    - split: dev
      path: cyclone_idai_2019/dev.json
    - split: test
      path: cyclone_idai_2019/test.json
- config_name: canada_wildfires_2016
  data_files:
    - split: train
      path: canada_wildfires_2016/train.json
    - split: dev
      path: canada_wildfires_2016/dev.json
    - split: test
      path: canada_wildfires_2016/test.json
- config_name: italy_earthquake_aug_2016
  data_files:
    - split: train
      path: italy_earthquake_aug_2016/train.json
    - split: dev
      path: italy_earthquake_aug_2016/dev.json
    - split: test
      path: italy_earthquake_aug_2016/test.json
- config_name: greece_wildfires_2018
  data_files:
    - split: train
      path: greece_wildfires_2018/train.json
    - split: dev
      path: greece_wildfires_2018/dev.json
    - split: test
      path: greece_wildfires_2018/test.json
- config_name: hurricane_dorian_2019
  data_files:
    - split: train
      path: hurricane_dorian_2019/train.json
    - split: dev
      path: hurricane_dorian_2019/dev.json
    - split: test
      path: hurricane_dorian_2019/test.json
- config_name: california_wildfires_2018
  data_files:
    - split: train
      path: california_wildfires_2018/train.json
    - split: dev
      path: california_wildfires_2018/dev.json
    - split: test
      path: california_wildfires_2018/test.json
- config_name: pakistan_earthquake_2019
  data_files:
    - split: train
      path: pakistan_earthquake_2019/train.json
    - split: dev
      path: pakistan_earthquake_2019/dev.json
    - split: test
      path: pakistan_earthquake_2019/test.json
- config_name: hurricane_matthew_2016
  data_files:
    - split: train
      path: hurricane_matthew_2016/train.json
    - split: dev
      path: hurricane_matthew_2016/dev.json
    - split: test
      path: hurricane_matthew_2016/test.json
- config_name: srilanka_floods_2017
  data_files:
    - split: train
      path: srilanka_floods_2017/train.json
    - split: dev
      path: srilanka_floods_2017/dev.json
    - split: test
      path: srilanka_floods_2017/test.json
---

# HumAID: Human-Annotated Disaster Incidents Data from Twitter


## Dataset Description

- **Homepage:** https://crisisnlp.qcri.org/humaid_dataset

- **Repository:** https://crisisnlp.qcri.org/data/humaid/humaid_data_all.zip

- **Paper:** https://ojs.aaai.org/index.php/ICWSM/article/view/18116/17919



### Dataset Summary



The HumAID Twitter dataset consists of several thousands of manually annotated tweets that has been collected during 19 major natural disaster events including earthquakes, hurricanes, wildfires, and floods, which happened from 2016 to 2019 across different parts of the World. The annotations in the provided datasets consists of following humanitarian categories. The dataset consists only english tweets and it is the largest dataset for crisis informatics so far.

** Humanitarian categories **

- Caution and advice

- Displaced people and evacuations

- Dont know cant judge

- Infrastructure and utility damage

- Injured or dead people

- Missing or found people

- Not humanitarian

- Other relevant information

- Requests or urgent needs

- Rescue volunteering or donation effort

- Sympathy and support



The resulting annotated dataset consists of 11 labels.



### Supported Tasks and Benchmark

The dataset can be used to train a model for multiclass tweet classification for disaster response. The benchmark results can be found in https://ojs.aaai.org/index.php/ICWSM/article/view/18116/17919.



Dataset is also released with event-wise and JSON objects for further research.

Full set of the dataset can be found in https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/A7NVF7



### Languages



English



## Dataset Structure



### Data Instances



```

{



"tweet_text": "@RT_com: URGENT: Death toll in #Ecuador #quake rises to 233 \u2013 President #Correa #1 in #Pakistan",



"class_label": "injured_or_dead_people"



}

```

### Data Fields



* tweet_text: corresponds to the tweet text.
* class_label: corresponds to a label assigned to a given tweet text





### Data Splits



* Train

* Development

* Test



## Dataset Creation

Tweets has been collected during several disaster events.





### Annotations

AMT has been used to annotate the dataset. Please check the paper for a more detail.



#### Who are the annotators?

- crowdsourced



### Licensing Information



- cc-by-nc-4.0



### Citation Information



```

@inproceedings{humaid2020,

Author = {Firoj Alam, Umair Qazi, Muhammad Imran, Ferda Ofli},

booktitle={Proceedings of the Fifteenth International AAAI Conference on Web and Social Media},

series={ICWSM~'21},

Keywords = {Social Media, Crisis Computing, Tweet Text Classification, Disaster Response},

Title = {HumAID: Human-Annotated Disaster Incidents Data from Twitter},

Year = {2021},

publisher={AAAI},

address={Online},

}

```