Commit
·
bd84a5b
1
Parent(s):
5cf4ec9
Update README: Added pygeometric use
Browse files
README.md
CHANGED
|
@@ -9,6 +9,8 @@ license: mit
|
|
| 9 |
- [Dataset Description](#dataset-description)
|
| 10 |
- [Dataset Summary](#dataset-summary)
|
| 11 |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
|
|
|
|
|
|
| 12 |
- [Dataset Structure](#dataset-structure)
|
| 13 |
- [Data Properties](#data-properties)
|
| 14 |
- [Data Fields](#data-fields)
|
|
@@ -34,6 +36,24 @@ The `ogbg-molhiv` dataset is a small molecular property prediction dataset, adap
|
|
| 34 |
`ogbg-molhiv` should be used for molecular property prediction (aiming to predict whether molecules inhibit HIV or not), a binary classification task.
|
| 35 |
The associated leaderboards are here: [OGB leaderboard](https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-molhiv) and [Papers with code leaderboard](https://paperswithcode.com/sota/graph-property-prediction-on-ogbg-molhiv).
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
## Dataset Structure
|
| 38 |
|
| 39 |
### Data Properties
|
|
|
|
| 9 |
- [Dataset Description](#dataset-description)
|
| 10 |
- [Dataset Summary](#dataset-summary)
|
| 11 |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
| 12 |
+
- [External Use](#external-use)
|
| 13 |
+
- [PyGeometric](#pygeometric)
|
| 14 |
- [Dataset Structure](#dataset-structure)
|
| 15 |
- [Data Properties](#data-properties)
|
| 16 |
- [Data Fields](#data-fields)
|
|
|
|
| 36 |
`ogbg-molhiv` should be used for molecular property prediction (aiming to predict whether molecules inhibit HIV or not), a binary classification task.
|
| 37 |
The associated leaderboards are here: [OGB leaderboard](https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-molhiv) and [Papers with code leaderboard](https://paperswithcode.com/sota/graph-property-prediction-on-ogbg-molhiv).
|
| 38 |
|
| 39 |
+
## External Use
|
| 40 |
+
### PyGeometric
|
| 41 |
+
To load in PyGeometric, do the following:
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
from datasets import load_dataset
|
| 45 |
+
|
| 46 |
+
from torch_geometric.data import Data
|
| 47 |
+
from torch_geometric.loader import DataLoader
|
| 48 |
+
|
| 49 |
+
ogbg_molhiv = load_dataset("graphs-datasets/ogbg-molhiv")
|
| 50 |
+
# For the train set (replace by valid or test as needed)
|
| 51 |
+
ogbg_molhiv_pg_list = [Data(graph) for graph in ogbg_molhiv["train"]]
|
| 52 |
+
ogbg_molhiv_pg = DataLoader(ogbg_molhiv_pg_list)
|
| 53 |
+
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
|
| 57 |
## Dataset Structure
|
| 58 |
|
| 59 |
### Data Properties
|