Badnyal commited on
Commit
42c2769
·
verified ·
1 Parent(s): 8db3394

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -1
README.md CHANGED
@@ -1,3 +1,92 @@
1
  ---
 
 
 
 
 
 
2
  license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - mizo
4
+ - monolingual
5
+ - nlp
6
+ - open-source
7
+ - text-corpus
8
  license: cc-by-4.0
9
+ dataset_info:
10
+ features:
11
+ - name: text
12
+ dtype: string
13
+ splits:
14
+ - name: train
15
+ num_examples: 4000000
16
+ size_in_bytes: 394000000
17
+ ---
18
+
19
+ # Mizo-Language-Corpus-4M
20
+
21
+ ## Description
22
+ The Mizo-Language-Corpus-4M is an open-source monolingual Mizo dataset containing 4 million sentences, curated by MWire Labs, Meghalaya, India. Derived from a larger 5.94 million-sentence corpus, this dataset has been meticulously processed to support natural language processing (NLP) research, promote linguistic equity, and foster open development in low-resource languages.
23
+
24
+ ## Dataset Statistics
25
+ - **Total Sentences**: 4,000,000
26
+ - **File Size**: ~394MB
27
+ - **Language**: Mizo (Mon-Khmer, Austroasiatic)
28
+ - **Source Corpus Size**: 5,944,581 sentences
29
+
30
+ ## License
31
+ This dataset is released under the [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license, requiring attribution to MWire Labs and the original sources. Users must cite this dataset and its contributors in any derived work.
32
+
33
+ ## Attribution
34
+ - **Curator**: MWire Labs, Meghalaya, India
35
+ - **Contact**: [email protected]
36
+ - **Sources**:
37
+ - IndicNLCorp (WMT-23 IndicNECorp1.0) for a significant portion of the raw text.
38
+ - Hugging Face datasets, including `HuggingFaceFW/finepdfs`.
39
+ - [https://dipr.mizoram.gov.in](https://dipr.mizoram.gov.in) (Directorate of Information & Public Relations, Government of Mizoram, India) for additional press release data.
40
+
41
+ ## Citation
42
+ Please cite this dataset as:
43
+ MWire Labs. (2025). *Mizo-Language-Corpus-4M*. https://huggingface.co/datasets/MWireLabs/mizo-language-corpus-4M
44
+ Additionally, cite the original sources: IndicNLCorp (WMT-23), Hugging Face dataset contributors, and the Directorate of Information & Public Relations, Government of Mizoram.
45
+
46
+ ## Processing Details
47
+ - **Deduplication**: Removed exact duplicate lines across the corpus using a set-based approach to ensure uniqueness.
48
+ - **Cleaning**:
49
+ - Filtered noise (e.g., URLs, special characters beyond basic punctuation) with regular expressions.
50
+ - Split long paragraphs into sentences using punctuation boundaries (., !, ?).
51
+ - Removed lines with 3+ repeated characters (e.g., XXX, !!!) and those with 4 or fewer words.
52
+ - Eliminated lines with more than 4 digits to reduce noise.
53
+ - Targeted removal of garbled text (e.g., non-ASCII dense lines) and web artifacts (e.g., Photobucket, blogspot references).
54
+ - **Validation**: Random sampling and manual review confirmed data quality.
55
+
56
+ ## How to Pull the Dataset
57
+ To access the Mizo-Language-Corpus-4M, use the following methods:
58
+
59
+ ### Using the `datasets` Library
60
+ ```python
61
+ from datasets import load_dataset
62
+
63
+ # Load the dataset
64
+ dataset = load_dataset(
65
+ "MWireLabs/mizo-language-corpus-4M",
66
+ data_files="mizo-language-corpus-4m.txt",
67
+ split="train"
68
+ )
69
+
70
+ # Verify the data
71
+ print(f"Total examples: {len(dataset)}")
72
+ print(f"\nFirst 3 examples:")
73
+ for i in range(min(3, len(dataset))):
74
+ print(dataset[i])
75
+ print(f"\nDataset features: {dataset.features}")
76
+
77
+ Using the Hugging Face Hub CLI
78
+
79
+ 1. Install the Hugging Face CLI: pip install huggingface_hub
80
+ 2. Log in: huggingface-cli login
81
+ 3. Download the file: huggingface-cli download MWireLabs/mizo-language-corpus-4M mizo-language-corpus-4m.txt --local-dir ./
82
+
83
+
84
+ ## Intended Use
85
+ This corpus is intended for training and evaluating Mizo language models, including masked language modeling, sentiment analysis, named entity recognition, and other NLP tasks. It supports academic research, educational tools, and regional language technology development.
86
+
87
+ ## Limitations
88
+ - Monolingual focus may limit bilingual applications.
89
+ - Some cultural nuances might be underrepresented due to cleaning filters.
90
+
91
+ ## Contributions
92
+ We welcome feedback, improvements, and additional data contributions. Contact [email protected] to collaborate.