--- configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* task_categories: - summarization language: - fr size_categories: - 100KPerhaps not a great dataset
(there's information in the summary that isn't in the original text) | | [csebuetnlp/xlsum](https://huggingface.co/datasets/csebuetnlp/xlsum)| 8,697 train / 1,086 validation / 1,086 test | We only keep the French split | | [orange_sum](https://huggingface.co/datasets/orange_sum)| 21,401 train / 1,500 validation / 1,500 test | We use the `abstract` split | | [mlsum](https://huggingface.co/datasets/mlsum)| 392,017 train / 16,059 validation / 15,820 test | We only keep the French split | | [fr_covid_news_8k](https://www.kaggle.com/datasets/guscor/covid19-french-news-dataset)| 8,084 train | | | [FakeNewsDetectionFr](https://github.com/jeugregg/FakeNewsDetectionFr)| 1,260 train | | | [MassiveSumm_short](https://huggingface.co/datasets/MaLA-LM/MassiveSumm_short)| 2,500 train | We only keep the French split | | [MassiveSumm_long](https://huggingface.co/datasets/MaLA-LM/MassiveSumm_long)| 684 train | We only keep the French split | | [wikinews](https://huggingface.co/datasets/malteos/wikinews)| 22,463 train | We only keep the French split | ## Removing duplicate data and leaks The sum of the values of the datasets listed here gives the following result: ``` DatasetDict({ train: Dataset({ features: ['text', 'summary', 'dataset'], num_rows: 797281 }) validation: Dataset({ features: ['text', 'summary', 'dataset'], num_rows: 27067 }) test: Dataset({ features: ['text', 'summary', 'dataset'], num_rows: 26481 }) }) ``` However, a data item in training split A may not be in A's test split, but may be present in B's test set, creating a leak when we create the A+B dataset. The same logic applies to duplicate data. So we need to make sure we remove them. After our clean-up, we finally have the following numbers: ``` DatasetDict({ train: Dataset({ features: ['text', 'summary', 'dataset'], num_rows: 788358 }) validation: Dataset({ features: ['text', 'summary', 'dataset'], num_rows: 26935 }) test: Dataset({ features: ['text', 'summary', 'dataset'], num_rows: 26380 }) }) ``` Note that an additional cleanup has been applied to all rows, removing all URLs and emojis present in the articles. ## Columns ``` dataset_train = dataset['train'].to_pandas() dataset_train.head() text summary dataset 0 L'astronomie est considérée comme la plus anci... L’astronomie est la science de l’observation d... xwikis 1 L'origine du mot est anglaise, "tourist", qui ... Le mot tourisme désigne le fait de voyager pou... xwikis 2 Étymologiquement, le mot français "philosophie... La philosophie, du grec ancien "φιλοσοφία" (com... xwikis 3 Le terme biologie est formé par la composition... La biologie (du grec "bios" « la vie » et "log... xwikis 4 Trois étymologies sont fréquemment citées, mai... La chimie est une science de la nature qui étu... xwikis ``` - the `text` column contains the text - the `summary` column contains text summary - the `dataset` column identifies the row's original dataset (if you wish to apply filters to it) ## Split - `train` corresponds to the concatenation of `xwikis` + `alpaca_motivations_sommaires` + `cross_sum` + `xlsum` + `orange_sum` + `mlsum` + `fr_covid_news_8k` + `FakeNewsDetectionFr` + `MassiveSumm_short`+ `MassiveSumm_long` + `wikinews` - `validation` corresponds to the concatenation of `xwikis` + `cross_sum` + `xlsum` + `orange_sum` + `mlsum` - `test` corresponds to the concatenation of `xwikis` + `cross_sum` + `xlsum` + `orange_sum` + `mlsum` # Citations ### alpaca_motivations_sommaires ``` Dataset by Amaury FOURET (2023) Hugging Face repository: https://huggingface.co/datasets/maurya/alpaca_motivations_sommaires ``` ### FakeNewsDetectionFr ``` Dataset by Gregory LANG (2019) Hugging Face repository: https://github.com/jeugregg/FakeNewsDetectionFr ``` ### fr_covid_news_8k ``` @dataset{covidfrenchnews, author = {Gustave Cortal}, year = {2021}, month = {03}, title = {COVID-19: French news dataset}, url = {https://www.gustavecortal.com}} ``` ### CrossSum ``` @misc{bhattacharjee2023crosssum, title={CrossSum: Beyond English-Centric Cross-Lingual Summarization for 1,500+ Language Pairs}, author={Abhik Bhattacharjee and Tahmid Hasan and Wasi Uddin Ahmad and Yuan-Fang Li and Yong-Bin Kang and Rifat Shahriyar}, year={2023}, eprint={2112.08804}, archivePrefix={arXiv}, primaryClass={cs.CL}} ``` ### mlsum ``` @inproceedings{scialom-etal-2020-mlsum, title = "{MLSUM}: The Multilingual Summarization Corpus", author = "Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo", editor = "Webber, Bonnie and Cohn, Trevor and He, Yulan and Liu, Yang", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.emnlp-main.647", doi = "10.18653/v1/2020.emnlp-main.647", pages = "8051--8067"} ``` ### orange_sum ``` @article{eddine2020barthez, title={BARThez: a Skilled Pretrained French Sequence-to-Sequence Model}, author={Eddine, Moussa Kamal and Tixier, Antoine J-P and Vazirgiannis, Michalis}, journal={arXiv preprint arXiv:2010.12321}, year={2020}} ``` ### xlsum ``` @inproceedings{hasan-etal-2021-xl, title = "{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages", author = "Hasan, Tahmid and Bhattacharjee, Abhik and Islam, Md. Saiful and Mubasshir, Kazi and Li, Yuan-Fang and Kang, Yong-Bin and Rahman, M. Sohel and Shahriyar, Rifat", editor = "Zong, Chengqing and Xia, Fei and Li, Wenjie and Navigli, Roberto", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.413", doi = "10.18653/v1/2021.findings-acl.413", pages = "4693--4703"} ``` ### xwikis ``` @misc{perezbeltrachini2022models, title={Models and Datasets for Cross-Lingual Summarisation}, author={Laura Perez-Beltrachini and Mirella Lapata}, year={2022}, eprint={2202.09583}, archivePrefix={arXiv}, primaryClass={cs.CL}} ``` ### MassiveSumm ``` @inproceedings{djamshidi-etal-2021-massivesumm, title = "MassiveSumm: A Very Large-Scale, Very Multilingual News Summarisation Dataset", author = "Djamshidi, Amir Abbas and Mehrabi, Pegah and Paun, Andrei and Sagot, Beno{^i}t", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.303", pages = "3749--3765", } ``` ### wikinews ``` Dataset by Malte OSTENDORFF (2024) Hugging Face repository: https://huggingface.co/datasets/malteos/wikinews ``` ### FrenchSUM ``` @misc {frenchSUM, author = { {BOURDOIS, Loïck} }, organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} }, title = { frenchSUM (Revision 299b07c) }, year = 2023, url = { https://huggingface.co/datasets/CATIE-AQ/frenchSUM }, doi = { 10.57967/hf/6447 }, publisher = { Hugging Face } } ``` # License [cc-by-4.0](https://creativecommons.org/licenses/by/4.0/deed.en)