File size: 3,370 Bytes
39e043a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619b03d
 
 
 
 
 
 
 
 
 
 
 
 
39e043a
d183d6e
 
 
 
 
35c2ccb
 
d183d6e
325b1d9
 
d183d6e
 
 
 
 
 
 
 
 
619b03d
 
 
 
d183d6e
 
619b03d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
dataset_info:
  features:
  - name: question_id
    dtype: string
  - name: image
    dtype: image
  - name: subject
    dtype: string
  - name: question_type
    dtype: string
  - name: year
    dtype: string
  - name: paper
    dtype: string
  - name: language
    dtype: string
  - name: answer
    dtype: string
  - name: answer_sources
    dtype: string
  - name: requires_image
    dtype: bool
  splits:
  - name: train
    num_bytes: 101253285.86
    num_examples: 1460
  download_size: 97675003
  dataset_size: 101253285.86
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- image-text-to-text
- question-answering
license: mit
language:
- en
- hi
tags:
- multimodal
- vlm
- scientific-reasoning
- benchmark
- education
---

# mmJEE-Eval: A Bilingual Multimodal Benchmark for Exam-Style Evaluation of Vision-Language Models

<div align="center">
<!-- Badges -->
<a href="https://arxiv.org/abs/2511.09339">
    <img src="https://img.shields.io/badge/arXiv-2511.09339-B31B1B?style=for-the-badge&logo=arxiv&logoColor=white" alt="arXiv">
</a>
<a href="https://github.com/ArkaMukherjee0/mmJEE-Eval">
    <img src="https://img.shields.io/badge/GitHub-Code-black?style=for-the-badge&logo=github" alt="GitHub Repository">
</a>
<a href="https://mmjee-eval.github.io">
    <img src="https://img.shields.io/badge/🌐%20Website-mmjee--eval-blue?style=for-the-badge" alt="Website">
</a>
<a href="#license">
    <img src="https://img.shields.io/badge/License-MIT-green?style=for-the-badge" alt="License">
</a>
</div>

**Paper:** [mmJEE-Eval: A Bilingual Multimodal Benchmark for Evaluating Scientific Reasoning in Vision-Language Models](https://huggingface.co/papers/2511.09339)
**Code:** [https://github.com/ArkaMukherjee0/mmJEE-Eval](https://github.com/ArkaMukherjee0/mmJEE-Eval)
**Project Page:** [https://mmjee-eval.github.io](https://mmjee-eval.github.io)

## Introduction

mmJEE-Eval is a multimodal and bilingual dataset for LLM evaluation comprising 1,460 challenging questions from seven years (2019-2025) of India's JEE Advanced competitive examination. We evaluate 17 state-of-the-art VLMs, finding that open models (from 7B-400B) struggle significantly (maxing at 40-50%) as compared to frontier models from Google and OpenAI (77-84%). mmJEE-Eval is significantly more challenging than the text-only JEEBench, the only other well-established dataset on JEE Advanced problems, with performance drops of 18-56% across all models. Our findings, especially metacognitive self-correction abilities, cross-lingual consistency, and human evaluation of reasoning quality, demonstrate that contemporary VLMs still show authentic scientific reasoning deficits despite strong question-solving capabilities (as evidenced by high Pass@K accuracies), establishing mmJEE-Eval as a challenging complementary benchmark that effectively discriminates between model capabilities.

## Sample Usage

You can load the dataset using the Hugging Face `datasets` library:

```python
from datasets import load_dataset

# Load the entire dataset
dataset = load_dataset("ArkaMukherjee/mmJEE-Eval")

# Access the training split
train_dataset = dataset["train"]

# Print an example
print(train_dataset[0])

# To run evaluation scripts, please refer to the official GitHub repository:
# https://github.com/ArkaMukherjee0/mmJEE-Eval
```