--- license: cc-by-4.0 task_categories: - image-segmentation tags: - medical - CT - segmentation - Couinaud_Liver size_categories: - n<1K configs: - config_name: default data_files: - split: train path: train.jsonl --- # Couinaud Liver Segmentation Dataset ## Dataset Description The Couinaud Liver Segmentation dataset for liver segmentation based on Couinaud classification. This dataset contains CT scans with dense segmentation annotations. ### Dataset Details - **Modality**: CT - **Target**: 8 liver segments (Couinaud classification) - **Format**: NIfTI (.nii.gz) ### Dataset Structure Each sample in the JSONL file contains: ```json { "image": "path/to/image.nii.gz", "mask": "path/to/mask.nii.gz", "label": ["organ1", "organ2", ...], "modality": "CT", "dataset": "Couinaud_Liver", "official_split": "train", "patient_id": "patient_id" } ``` ## Usage ### Load Metadata ```python from datasets import load_dataset # Load the dataset ds = load_dataset("Angelou0516/couinaud-liver") # Access a sample sample = ds['train'][0] print(f"Patient ID: {sample['patient_id']}") print(f"Image: {sample['image']}") print(f"Mask: {sample['mask']}") print(f"Labels: {sample['label']}") ``` ### Load Images ```python from huggingface_hub import snapshot_download import nibabel as nib import os # Download the full dataset local_path = snapshot_download( repo_id="Angelou0516/couinaud-liver", repo_type="dataset" ) # Load a sample sample = ds['train'][0] image = nib.load(os.path.join(local_path, sample['image'])) mask = nib.load(os.path.join(local_path, sample['mask'])) # Get numpy arrays image_data = image.get_fdata() mask_data = mask.get_fdata() print(f"Image shape: {image_data.shape}") print(f"Mask shape: {mask_data.shape}") ``` ## Citation ```bibtex @article{couinaud_liver, title={Couinaud Liver Segmentation Dataset}, year={2023} } ``` ## License CC-BY-4.0 ## Dataset Homepage https://www.ircad.fr/