cpatonn commited on
Commit
0f7de12
·
verified ·
1 Parent(s): 4f8404e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -5
README.md CHANGED
@@ -14,15 +14,66 @@ language:
14
  - ar
15
  license: apache-2.0
16
  inference: false
17
- base_model:
18
- - mistralai/Ministral-3-14B-Reasoning-2512
19
- extra_gated_description: >-
20
- If you want to learn more about how we process your personal data, please read
21
- our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
22
  tags:
23
  - mistral-common
24
  ---
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  # Ministral 3 14B Reasoning 2512
27
 
28
  The largest model in the Ministral 3 family, **Ministral 3 14B** offers frontier capabilities and performance comparable to its larger [Mistral Small 3.2 24B](https://huggingface.co/mistralai/Mistral-Small-3.2-Instruct-2506) counterpart. A powerful and efficient language model with vision capabilities.
 
14
  - ar
15
  license: apache-2.0
16
  inference: false
17
+ base_model: mistralai/Ministral-3-14B-Reasoning-2512
18
+ extra_gated_description: If you want to learn more about how we process your personal
19
+ data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
 
 
20
  tags:
21
  - mistral-common
22
  ---
23
 
24
+ # Ministral-3-14B-Reasoning-2512 AWQ - INT4
25
+
26
+ ## Model Details
27
+
28
+ ### Quantization Details
29
+
30
+ - **Quantization Method:** AWQ
31
+ - **Bits:** 4
32
+ - **Group Size:** 32
33
+ - **Calibration Dataset:** [5CD-AI/LLaVA-CoT-o1-Instruct](https://huggingface.co/datasets/5CD-AI/LLaVA-CoT-o1-Instruct)
34
+ - **Quantization Tool:** [llm-compressor](https://github.com/vllm-project/llm-compressor)
35
+
36
+ ### Memory Usage
37
+
38
+ | **Type** | **Ministral-3-14B-Reasoning-2512** | **Ministral-3-14B-Reasoning-2512-AWQ-4bit** |
39
+ |:---------------:|:----------------:|:----------------:|
40
+ | **Memory Size** | 51.9 GB | 19.4 GB |
41
+ | **KV Cache per Token** | 200.0 kB | 50.0 kB |
42
+ | **KV Cache per Context** | 50.0 GB | 12.5 GB |
43
+
44
+ ### Evaluations
45
+
46
+ | **Benchmarks** | **Ministral-3-14B-Reasoning-2512** | **Ministral-3-14B-Reasoning-2512-AWQ-4bit** |
47
+ |:---------------:|:----------------:|:----------------:|
48
+ | **Perplexity** | 1.52771 | 1.5367 |
49
+
50
+ - **Evaluation Context Length:** 16384
51
+
52
+ ## Inference
53
+
54
+ ### Prerequisite
55
+
56
+ ```bash
57
+ pip install -U vllm
58
+ ```
59
+
60
+ ### Basic Usage
61
+
62
+ ```bash
63
+ vllm serve cyankiwi/Ministral-3-14B-Reasoning-2512-AWQ-4bit --tokenizer_mode mistral --config_format mistral --load_format mistral --enable-auto-tool-choice --tool-call-parser mistral
64
+ ```
65
+
66
+ ## Additional Information
67
+
68
+ ### Changelog
69
+
70
+ - **v1.0.0** - Initial quantized release
71
+
72
+ ### Authors
73
+
74
+ - **Name:** Ton Cao
75
+ - **Contacts:** [email protected]
76
+
77
  # Ministral 3 14B Reasoning 2512
78
 
79
  The largest model in the Ministral 3 family, **Ministral 3 14B** offers frontier capabilities and performance comparable to its larger [Mistral Small 3.2 24B](https://huggingface.co/mistralai/Mistral-Small-3.2-Instruct-2506) counterpart. A powerful and efficient language model with vision capabilities.