--- library_name: transformers license: apache-2.0 base_model: albert/albert-xlarge-v2 tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: 786803fb46c971c9608429e8dab90069 results: [] --- # 786803fb46c971c9608429e8dab90069 This model is a fine-tuned version of [albert/albert-xlarge-v2](https://huggingface.co/albert/albert-xlarge-v2) on the nyu-mll/glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6935 - Data Size: 0.25 - Epoch Runtime: 63.3036 - Accuracy: 0.4943 - F1 Macro: 0.3308 - Rouge1: 0.4947 - Rouge2: 0.0 - Rougel: 0.4943 - Rougelsum: 0.4944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 0.7887 | 0 | 4.3758 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 | | No log | 1 | 3273 | 0.6953 | 0.0078 | 6.4227 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 | | 0.0118 | 2 | 6546 | 0.6927 | 0.0156 | 8.1931 | 0.5024 | 0.4157 | 0.5020 | 0.0 | 0.5019 | 0.5024 | | 0.718 | 3 | 9819 | 0.6973 | 0.0312 | 11.9350 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 | | 0.7175 | 4 | 13092 | 0.6931 | 0.0625 | 19.1269 | 0.5057 | 0.3359 | 0.5053 | 0.0 | 0.5057 | 0.5056 | | 0.7213 | 5 | 16365 | 0.7066 | 0.125 | 33.6047 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 | | 0.7133 | 6 | 19638 | 0.6935 | 0.25 | 63.3036 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.1