File size: 6,658 Bytes
a37ced9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from torch.nn.parameter import Parameter

class ArcMarginProduct(nn.Module):
    r"""Implement of large margin arc distance: :
        Args:
            in_features: size of each input sample
            out_features: size of each output sample
            s: norm of input feature
            m: margin
            cos(theta + m)wandb: ERROR Abnormal program exit

        """
    def __init__(self, in_features, out_features, s=30.0, m=0.50, easy_margin=False, ls_eps=0.0):
        super(ArcMarginProduct, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.s = s
        self.m = m
        self.ls_eps = ls_eps  # label smoothing
        self.weight = Parameter(torch.FloatTensor(out_features, in_features))
        nn.init.xavier_uniform_(self.weight)

        self.easy_margin = easy_margin
        self.cos_m = math.cos(m)
        self.sin_m = math.sin(m)
        self.th = math.cos(math.pi - m)
        self.mm = math.sin(math.pi - m) * m

    def forward(self, input, label):
        # --------------------------- cos(theta) & phi(theta) ---------------------------
        cosine = F.linear(F.normalize(input), F.normalize(self.weight))
        sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
        phi = cosine * self.cos_m - sine * self.sin_m
        if self.easy_margin:
            phi = torch.where(cosine > 0, phi, cosine)
        else:
            phi = torch.where(cosine > self.th, phi, cosine - self.mm)
        # --------------------------- convert label to one-hot ---------------------------
        # one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda')
        one_hot = torch.zeros(cosine.size(), device='cuda')
        one_hot.scatter_(1, label.view(-1, 1).long(), 1)
        if self.ls_eps > 0:
            one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.out_features
        # -------------torch.where(out_i = {x_i if condition_i else y_i) -------------
        output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
        output *= self.s

        return output
    

def l2_norm(input, axis = 1):
    norm = torch.norm(input, 2, axis, True)
    output = torch.div(input, norm)

    return output
class ElasticArcFace(nn.Module):
    def __init__(self, in_features, out_features, s=64.0, m=0.50,std=0.0125,plus=False, k=None):
        super(ElasticArcFace, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.s = s
        self.m = m
        self.kernel = nn.Parameter(torch.FloatTensor(in_features, out_features))
        nn.init.normal_(self.kernel, std=0.01)
        self.std=std
        self.plus=plus
    def forward(self, embbedings, label):
        embbedings = l2_norm(embbedings, axis=1)
        kernel_norm = l2_norm(self.kernel, axis=0)
        cos_theta = torch.mm(embbedings, kernel_norm)
        cos_theta = cos_theta.clamp(-1, 1)  # for numerical stability
        index = torch.where(label != -1)[0]
        m_hot = torch.zeros(index.size()[0], cos_theta.size()[1], device=cos_theta.device)
        margin = torch.normal(mean=self.m, std=self.std, size=label[index, None].size(), device=cos_theta.device) # Fast converge .clamp(self.m-self.std, self.m+self.std)
        if self.plus:
            with torch.no_grad():
                distmat = cos_theta[index, label.view(-1)].detach().clone()
                _, idicate_cosie = torch.sort(distmat, dim=0, descending=True)
                margin, _ = torch.sort(margin, dim=0)
            m_hot.scatter_(1, label[index, None], margin[idicate_cosie])
        else:
            m_hot.scatter_(1, label[index, None], margin)
        cos_theta.acos_()
        cos_theta[index] += m_hot
        cos_theta.cos_().mul_(self.s)
        return cos_theta
    
########## Subcenter Arcface with dynamic margin ##########

class ArcMarginProduct_subcenter(nn.Module):
    def __init__(self, in_features, out_features, k=3):
        super().__init__()
        self.weight = nn.Parameter(torch.FloatTensor(out_features*k, in_features))
        self.reset_parameters()
        self.k = k
        self.out_features = out_features
        
    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        
    def forward(self, features):
        cosine_all = F.linear(F.normalize(features), F.normalize(self.weight))
        cosine_all = cosine_all.view(-1, self.out_features, self.k)
        cosine, _ = torch.max(cosine_all, dim=2)
        return cosine
    
class ArcFaceLossAdaptiveMargin(nn.modules.Module):
    def __init__(self, margins, out_dim, s):
        super().__init__()
#         self.crit = nn.CrossEntropyLoss()
        self.s = s
        self.register_buffer('margins', torch.tensor(margins))
        self.out_dim = out_dim
            
    def forward(self, logits, labels):
        #ms = []
        #ms = self.margins[labels.cpu().numpy()]
        ms = self.margins[labels]
        cos_m = torch.cos(ms) #torch.from_numpy(np.cos(ms)).float().cuda()
        sin_m = torch.sin(ms) #torch.from_numpy(np.sin(ms)).float().cuda()
        th = torch.cos(math.pi - ms)#torch.from_numpy(np.cos(math.pi - ms)).float().cuda()
        mm = torch.sin(math.pi - ms) * ms#torch.from_numpy(np.sin(math.pi - ms) * ms).float().cuda()
        labels = F.one_hot(labels, self.out_dim).float()
        cosine = logits
        sine = torch.sqrt(1.0 - cosine * cosine)
        phi = cosine * cos_m.view(-1,1) - sine * sin_m.view(-1,1)
        phi = torch.where(cosine > th.view(-1,1), phi, cosine - mm.view(-1,1))
        output = (labels * phi) + ((1.0 - labels) * cosine)
        output *= self.s
        return output
    
class ArcFaceSubCenterDynamic(nn.Module):
    def __init__(
        self,
        embedding_dim,
        output_classes,
        margins,
        s,
        k=2,
    ):
        super().__init__()

        self.embedding_dim = embedding_dim
        self.output_classes = output_classes
        self.margins = margins
        self.s = s
        self.wmetric_classify = ArcMarginProduct_subcenter(self.embedding_dim, self.output_classes, k=k)
        
        self.warcface_margin = ArcFaceLossAdaptiveMargin(margins=self.margins, 
                                                         out_dim=self.output_classes, 
                                                         s=self.s)

    def forward(self, features, labels):
        logits = self.wmetric_classify(features.float())
        logits = self.warcface_margin(logits, labels)
        return logits