Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,80 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- text-classification
|
| 4 |
+
- multi-label
|
| 5 |
+
- go-emotions
|
| 6 |
+
- transformers
|
| 7 |
+
- huggingface
|
| 8 |
+
license: apache-2.0
|
| 9 |
+
library_name: transformers
|
| 10 |
+
language:
|
| 11 |
+
- en
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
- f1
|
| 15 |
+
base_model:
|
| 16 |
+
- google-bert/bert-base-uncased
|
| 17 |
+
pipeline_tag: text-classification
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# π₯ Fine-Tuned BERT on GoEmotions Dataset
|
| 21 |
+
|
| 22 |
+
## π Model Overview
|
| 23 |
+
This model is a **fine-tuned version of BERT** (`bert-base-uncased`) on the **GoEmotions** dataset for **multi-label emotion classification**. It can predict multiple emotions per input text.
|
| 24 |
+
|
| 25 |
+
## π Performance
|
| 26 |
+
| Metric | Score |
|
| 27 |
+
|----------------|-------|
|
| 28 |
+
| **Accuracy** | 46.57% |
|
| 29 |
+
| **F1 Score** | 56.41% |
|
| 30 |
+
| **Hamming Loss** | 3.39% |
|
| 31 |
+
|
| 32 |
+
## π Model Usage
|
| 33 |
+
```python
|
| 34 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 35 |
+
import torch
|
| 36 |
+
|
| 37 |
+
# Load model and tokenizer
|
| 38 |
+
model_name = "codewithdark/bert-Gomotions"
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 40 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 41 |
+
|
| 42 |
+
# Example text
|
| 43 |
+
text = "I'm so happy today!"
|
| 44 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 45 |
+
|
| 46 |
+
# Predict
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
outputs = model(**inputs)
|
| 49 |
+
probs = torch.sigmoid(outputs.logits)
|
| 50 |
+
|
| 51 |
+
print(probs) # Multi-label predictions
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
## ποΈββοΈ Training Details
|
| 55 |
+
- **Model:** `bert-base-uncased`
|
| 56 |
+
- **Dataset:** [GoEmotions](https://huggingface.co/datasets/go_emotions)
|
| 57 |
+
- **Optimizer:** AdamW
|
| 58 |
+
- **Loss Function:** BCEWithLogitsLoss (Binary Cross-Entropy for multi-label classification)
|
| 59 |
+
- **Batch Size:** 16
|
| 60 |
+
- **Epochs:** 3
|
| 61 |
+
- **Evaluation Metrics:** Accuracy, F1 Score, Hamming Loss
|
| 62 |
+
|
| 63 |
+
## π How to Use in Hugging Face
|
| 64 |
+
```python
|
| 65 |
+
from transformers import pipeline
|
| 66 |
+
|
| 67 |
+
classifier = pipeline("text-classification", model="your-username/bert-go-emotions", top_k=None)
|
| 68 |
+
classifier("I'm so excited about the trip!")
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
## π οΈ Citation
|
| 72 |
+
If you use this model, please cite:
|
| 73 |
+
```bibtex
|
| 74 |
+
@misc{your_model,
|
| 75 |
+
author = {codewithdark},
|
| 76 |
+
title = {Fine-tuned BERT on GoEmotions},
|
| 77 |
+
year = {2025},
|
| 78 |
+
url = {https://huggingface.co/codewithdark/bert-Gomotions}
|
| 79 |
+
}
|
| 80 |
+
```
|