Update README.md
Browse files
README.md
CHANGED
|
@@ -39,6 +39,14 @@ model_name = "codewithdark/bert-Gomotions"
|
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 40 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
# Example text
|
| 43 |
text = "I'm so happy today!"
|
| 44 |
inputs = tokenizer(text, return_tensors="pt")
|
|
@@ -46,9 +54,27 @@ inputs = tokenizer(text, return_tensors="pt")
|
|
| 46 |
# Predict
|
| 47 |
with torch.no_grad():
|
| 48 |
outputs = model(**inputs)
|
| 49 |
-
probs = torch.sigmoid(outputs.logits)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
```
|
| 53 |
|
| 54 |
## 🏋️♂️ Training Details
|
|
@@ -64,7 +90,7 @@ print(probs) # Multi-label predictions
|
|
| 64 |
```python
|
| 65 |
from transformers import pipeline
|
| 66 |
|
| 67 |
-
classifier = pipeline("text-classification", model="
|
| 68 |
classifier("I'm so excited about the trip!")
|
| 69 |
```
|
| 70 |
|
|
|
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 40 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 41 |
|
| 42 |
+
# Emotion labels (adjust based on your dataset)
|
| 43 |
+
emotion_labels = [
|
| 44 |
+
"Admiration", "Amusement", "Anger", "Annoyance", "Approval", "Caring", "Confusion",
|
| 45 |
+
"Curiosity", "Desire", "Disappointment", "Disapproval", "Disgust", "Embarrassment",
|
| 46 |
+
"Excitement", "Fear", "Gratitude", "Grief", "Joy", "Love", "Nervousness", "Optimism",
|
| 47 |
+
"Pride", "Realization", "Relief", "Remorse", "Sadness", "Surprise", "Neutral"
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
# Example text
|
| 51 |
text = "I'm so happy today!"
|
| 52 |
inputs = tokenizer(text, return_tensors="pt")
|
|
|
|
| 54 |
# Predict
|
| 55 |
with torch.no_grad():
|
| 56 |
outputs = model(**inputs)
|
| 57 |
+
probs = torch.sigmoid(outputs.logits).squeeze(0) # Convert logits to probabilities
|
| 58 |
+
|
| 59 |
+
# Get top 5 predictions
|
| 60 |
+
top5_indices = torch.argsort(probs, descending=True)[:5] # Get indices of top 5 labels
|
| 61 |
+
top5_labels = [emotion_labels[i] for i in top5_indices]
|
| 62 |
+
top5_probs = [probs[i].item() for i in top5_indices]
|
| 63 |
+
|
| 64 |
+
# Print results
|
| 65 |
+
print("Top 5 Predicted Emotions:")
|
| 66 |
+
for label, prob in zip(top5_labels, top5_probs):
|
| 67 |
+
print(f"{label}: {prob:.4f}")
|
| 68 |
|
| 69 |
+
'''
|
| 70 |
+
output:
|
| 71 |
+
Top 5 Predicted Emotions:
|
| 72 |
+
Joy: 0.9478
|
| 73 |
+
Love: 0.7854
|
| 74 |
+
Optimism: 0.6342
|
| 75 |
+
Admiration: 0.5678
|
| 76 |
+
Excitement: 0.5231
|
| 77 |
+
'''
|
| 78 |
```
|
| 79 |
|
| 80 |
## 🏋️♂️ Training Details
|
|
|
|
| 90 |
```python
|
| 91 |
from transformers import pipeline
|
| 92 |
|
| 93 |
+
classifier = pipeline("text-classification", model="codewithdark/bert-Gomotions", top_k=None)
|
| 94 |
classifier("I'm so excited about the trip!")
|
| 95 |
```
|
| 96 |
|