---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Solicite um relatório financeiro trimestral via ERP conectado.
- text: If you save $200 monthly, how much money will you have saved after 18 months?
- text: Get the stock price history of Tesla for the last month.
- text: Given a historical archive of economic indicators, build a forecasting model
that predicts recessions, incorporating leading, lagging, and coincident indicators
with explainable outputs.
- text: Narrate the experience of a character born without the ability to dream.
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: ibm-granite/granite-embedding-107m-multilingual
model-index:
- name: SetFit with ibm-granite/granite-embedding-107m-multilingual
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9966555183946488
name: Accuracy
---
# SetFit with ibm-granite/granite-embedding-107m-multilingual
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [ibm-granite/granite-embedding-107m-multilingual](https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [ibm-granite/granite-embedding-107m-multilingual](https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 8 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| summarization |
- 'Resuma um texto acadêmico sobre psicologia do comportamento.'
- 'Summarize the timeline and outcomes of a historical event based on multiple eyewitness accounts.'
- 'Extract and summarize the key lessons learned from multiple post-project reviews.'
|
| general_knowledge | - 'Qual é a importância da agricultura para a economia brasileira?'
- 'Quais são os principais países membros da Organização dos Países Exportadores de Petróleo (OPEP)?'
- 'What is the mechanism by which vaccines provide immunity?'
|
| roleplay | - 'Personifique um chef pâtissier criando uma sobremesa para um júri exigente.'
- 'You are a software tester devising scenarios to uncover bugs in a complex system.'
- 'Simule uma reunião de conselho editorial decidindo o rumo de uma grande publicação.'
|
| creativity | - 'Write a thriller in which the protagonist communicates only through artwork.'
- 'Imagine um poema narrativo sobre a relação entre o sertão e a poesia de uma geração esquecida.'
- 'Write a story from the perspective of a shadow that gains independence.'
|
| complex_reasoning | - 'Analise as implicações do uso de drones autônomos para entregas em áreas urbanas densas.'
- 'Proponha um sistema para avaliação automatizada e justa de currículos em processos seletivos corporativos.'
- 'Proponha um modelo para prever o crescimento urbano sustentável considerando variáveis ambientais e sociais.'
|
| coding | - 'Implemente uma função para decompor números inteiros em fatores primos eficientemente para valores grandes.'
- 'Create an integration that consumes streaming data from an external message broker and processes events in real-time with backpressure management.'
- 'Escreva um algoritmo para encontrar os pontos de articulação (cut vertices) em um grafo não direcionado.'
|
| basic_reasoning | - 'Se um carro consome 12 litros de gasolina para 100 km, quantos litros usará para 150 km?'
- 'If a ladder leans against a wall forming a 60-degree angle and the ladder length is 10 feet, how high does it reach on the wall?'
- 'Quantos centímetros tem 1 metro?'
|
| tool | - 'Fetch comprehensive user reviews and ratings for a mobile app across platforms.'
- 'Analyze sentiment of a tweet and classify it as positive, neutral, or negative.'
- 'Retrieve country-wise COVID-19 vaccination rates from an authoritative source.'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9967 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cnmoro/prompt-router")
# Run inference
preds = model("Get the stock price history of Tesla for the last month.")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 5 | 13.6792 | 38 |
| Label | Training Sample Count |
|:------------------|:----------------------|
| summarization | 160 |
| tool | 144 |
| general_knowledge | 154 |
| roleplay | 145 |
| complex_reasoning | 130 |
| creativity | 164 |
| coding | 152 |
| basic_reasoning | 148 |
### Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (1, 16)
- max_steps: 2400
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- evaluation_strategy: steps
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0004 | 1 | 0.1954 | - |
| 0.0208 | 50 | 0.2125 | - |
| 0.0417 | 100 | 0.2131 | - |
| 0.0625 | 150 | 0.2072 | - |
| 0.0833 | 200 | 0.2029 | 0.1902 |
| 0.1042 | 250 | 0.1925 | - |
| 0.125 | 300 | 0.1764 | - |
| 0.1458 | 350 | 0.1512 | - |
| 0.1667 | 400 | 0.1229 | 0.1072 |
| 0.1875 | 450 | 0.1015 | - |
| 0.2083 | 500 | 0.0862 | - |
| 0.2292 | 550 | 0.065 | - |
| 0.25 | 600 | 0.0505 | 0.0504 |
| 0.2708 | 650 | 0.0532 | - |
| 0.2917 | 700 | 0.0427 | - |
| 0.3125 | 750 | 0.0378 | - |
| 0.3333 | 800 | 0.0357 | 0.0322 |
| 0.3542 | 850 | 0.0286 | - |
| 0.375 | 900 | 0.0381 | - |
| 0.3958 | 950 | 0.0333 | - |
| 0.4167 | 1000 | 0.0307 | 0.0235 |
| 0.4375 | 1050 | 0.0245 | - |
| 0.4583 | 1100 | 0.0245 | - |
| 0.4792 | 1150 | 0.0217 | - |
| 0.5 | 1200 | 0.0193 | 0.0168 |
| 0.5208 | 1250 | 0.0167 | - |
| 0.5417 | 1300 | 0.0158 | - |
| 0.5625 | 1350 | 0.02 | - |
| 0.5833 | 1400 | 0.0167 | 0.0120 |
| 0.6042 | 1450 | 0.0176 | - |
| 0.625 | 1500 | 0.0159 | - |
| 0.6458 | 1550 | 0.0141 | - |
| 0.6667 | 1600 | 0.0131 | 0.0094 |
| 0.6875 | 1650 | 0.0097 | - |
| 0.7083 | 1700 | 0.0109 | - |
| 0.7292 | 1750 | 0.0126 | - |
| 0.75 | 1800 | 0.0115 | 0.0079 |
| 0.7708 | 1850 | 0.0122 | - |
| 0.7917 | 1900 | 0.0104 | - |
| 0.8125 | 1950 | 0.0111 | - |
| 0.8333 | 2000 | 0.011 | 0.0071 |
| 0.8542 | 2050 | 0.0095 | - |
| 0.875 | 2100 | 0.009 | - |
| 0.8958 | 2150 | 0.0107 | - |
| 0.9167 | 2200 | 0.0099 | 0.0067 |
| 0.9375 | 2250 | 0.0084 | - |
| 0.9583 | 2300 | 0.0086 | - |
| 0.9792 | 2350 | 0.0089 | - |
| 1.0 | 2400 | 0.0098 | 0.0066 |
### Framework Versions
- Python: 3.11.11
- SetFit: 1.2.0.dev0
- Sentence Transformers: 4.0.2
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```