Add SetFit model
Browse files- 1_Pooling/config.json +8 -8
- README.md +82 -89
- config.json +1 -1
- config_sentence_transformers.json +8 -4
- config_setfit.json +6 -5
- model.safetensors +1 -1
- model_head.pkl +2 -2
- sentence_bert_config.json +2 -2
1_Pooling/config.json
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
}
|
README.md
CHANGED
|
@@ -5,16 +5,11 @@ tags:
|
|
| 5 |
- text-classification
|
| 6 |
- generated_from_setfit_trainer
|
| 7 |
widget:
|
| 8 |
-
- text:
|
| 9 |
-
- text:
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
- text:
|
| 13 |
-
- text: >-
|
| 14 |
-
Given a historical archive of economic indicators, build a forecasting model
|
| 15 |
-
that predicts recessions, incorporating leading, lagging, and coincident
|
| 16 |
-
indicators with explainable outputs.
|
| 17 |
-
- text: Narrate the experience of a character born without the ability to dream.
|
| 18 |
metrics:
|
| 19 |
- accuracy
|
| 20 |
pipeline_tag: text-classification
|
|
@@ -33,12 +28,8 @@ model-index:
|
|
| 33 |
split: test
|
| 34 |
metrics:
|
| 35 |
- type: accuracy
|
| 36 |
-
value: 0.
|
| 37 |
name: Accuracy
|
| 38 |
-
license: apache-2.0
|
| 39 |
-
language:
|
| 40 |
-
- pt
|
| 41 |
-
- en
|
| 42 |
---
|
| 43 |
|
| 44 |
# SetFit with ibm-granite/granite-embedding-107m-multilingual
|
|
@@ -57,7 +48,7 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
| 57 |
- **Sentence Transformer body:** [ibm-granite/granite-embedding-107m-multilingual](https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual)
|
| 58 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 59 |
- **Maximum Sequence Length:** 512 tokens
|
| 60 |
-
- **Number of Classes:**
|
| 61 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 62 |
<!-- - **Language:** Unknown -->
|
| 63 |
<!-- - **License:** Unknown -->
|
|
@@ -71,21 +62,22 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
| 71 |
### Model Labels
|
| 72 |
| Label | Examples |
|
| 73 |
|:------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 74 |
-
|
|
| 75 |
-
| general_knowledge | <ul><li>'
|
| 76 |
-
|
|
| 77 |
-
|
|
| 78 |
-
|
|
| 79 |
-
|
|
| 80 |
-
| basic_reasoning | <ul><li>'Se
|
| 81 |
-
| tool | <ul><li>'
|
|
|
|
| 82 |
|
| 83 |
## Evaluation
|
| 84 |
|
| 85 |
### Metrics
|
| 86 |
| Label | Accuracy |
|
| 87 |
|:--------|:---------|
|
| 88 |
-
| **all** | 0.
|
| 89 |
|
| 90 |
## Uses
|
| 91 |
|
|
@@ -105,7 +97,7 @@ from setfit import SetFitModel
|
|
| 105 |
# Download from the 🤗 Hub
|
| 106 |
model = SetFitModel.from_pretrained("cnmoro/prompt-router")
|
| 107 |
# Run inference
|
| 108 |
-
preds = model("
|
| 109 |
```
|
| 110 |
|
| 111 |
<!--
|
|
@@ -137,18 +129,19 @@ preds = model("Get the stock price history of Tesla for the last month.")
|
|
| 137 |
### Training Set Metrics
|
| 138 |
| Training set | Min | Median | Max |
|
| 139 |
|:-------------|:----|:--------|:----|
|
| 140 |
-
| Word count | 5 |
|
| 141 |
|
| 142 |
| Label | Training Sample Count |
|
| 143 |
|:------------------|:----------------------|
|
| 144 |
-
|
|
| 145 |
-
|
|
| 146 |
-
|
|
| 147 |
-
|
|
| 148 |
-
|
|
| 149 |
-
|
|
| 150 |
-
|
|
| 151 |
-
|
|
|
|
|
| 152 |
|
| 153 |
### Training Hyperparameters
|
| 154 |
- batch_size: (8, 8)
|
|
@@ -172,64 +165,64 @@ preds = model("Get the stock price history of Tesla for the last month.")
|
|
| 172 |
### Training Results
|
| 173 |
| Epoch | Step | Training Loss | Validation Loss |
|
| 174 |
|:------:|:----:|:-------------:|:---------------:|
|
| 175 |
-
| 0.0004 | 1 | 0.
|
| 176 |
-
| 0.0208 | 50 | 0.
|
| 177 |
-
| 0.0417 | 100 | 0.
|
| 178 |
-
| 0.0625 | 150 | 0.
|
| 179 |
-
| 0.0833 | 200 | 0.
|
| 180 |
-
| 0.1042 | 250 | 0.
|
| 181 |
-
| 0.125 | 300 | 0.
|
| 182 |
-
| 0.1458 | 350 | 0.
|
| 183 |
-
| 0.1667 | 400 | 0.
|
| 184 |
-
| 0.1875 | 450 | 0.
|
| 185 |
-
| 0.2083 | 500 | 0.
|
| 186 |
-
| 0.2292 | 550 | 0.
|
| 187 |
-
| 0.25 | 600 | 0.
|
| 188 |
-
| 0.2708 | 650 | 0.
|
| 189 |
-
| 0.2917 | 700 | 0.
|
| 190 |
-
| 0.3125 | 750 | 0.
|
| 191 |
-
| 0.3333 | 800 | 0.
|
| 192 |
-
| 0.3542 | 850 | 0.
|
| 193 |
-
| 0.375 | 900 | 0.
|
| 194 |
-
| 0.3958 | 950 | 0.
|
| 195 |
-
| 0.4167 | 1000 | 0.
|
| 196 |
-
| 0.4375 | 1050 | 0.
|
| 197 |
-
| 0.4583 | 1100 | 0.
|
| 198 |
-
| 0.4792 | 1150 | 0.
|
| 199 |
-
| 0.5 | 1200 | 0.
|
| 200 |
-
| 0.5208 | 1250 | 0.
|
| 201 |
-
| 0.5417 | 1300 | 0.
|
| 202 |
-
| 0.5625 | 1350 | 0.
|
| 203 |
-
| 0.5833 | 1400 | 0.
|
| 204 |
-
| 0.6042 | 1450 | 0.
|
| 205 |
-
| 0.625 | 1500 | 0.
|
| 206 |
-
| 0.6458 | 1550 | 0.
|
| 207 |
-
| 0.6667 | 1600 | 0.
|
| 208 |
-
| 0.6875 | 1650 | 0.
|
| 209 |
-
| 0.7083 | 1700 | 0.
|
| 210 |
-
| 0.7292 | 1750 | 0.
|
| 211 |
-
| 0.75 | 1800 | 0.
|
| 212 |
-
| 0.7708 | 1850 | 0.
|
| 213 |
-
| 0.7917 | 1900 | 0.
|
| 214 |
-
| 0.8125 | 1950 | 0.
|
| 215 |
-
| 0.8333 | 2000 | 0.
|
| 216 |
-
| 0.8542 | 2050 | 0.
|
| 217 |
-
| 0.875 | 2100 | 0.
|
| 218 |
-
| 0.8958 | 2150 | 0.
|
| 219 |
-
| 0.9167 | 2200 | 0.
|
| 220 |
-
| 0.9375 | 2250 | 0.
|
| 221 |
-
| 0.9583 | 2300 | 0.
|
| 222 |
-
| 0.9792 | 2350 | 0.
|
| 223 |
-
| 1.0 | 2400 | 0.
|
| 224 |
|
| 225 |
### Framework Versions
|
| 226 |
- Python: 3.11.11
|
| 227 |
- SetFit: 1.2.0.dev0
|
| 228 |
-
- Sentence Transformers:
|
| 229 |
-
- Transformers: 4.
|
| 230 |
-
- PyTorch: 2.
|
| 231 |
-
- Datasets: 3.
|
| 232 |
-
- Tokenizers: 0.21.
|
| 233 |
|
| 234 |
## Citation
|
| 235 |
|
|
|
|
| 5 |
- text-classification
|
| 6 |
- generated_from_setfit_trainer
|
| 7 |
widget:
|
| 8 |
+
- text: Check the availability and prices of iPhone 13 models across online retailers.
|
| 9 |
+
- text: Se um copo está metade cheio, quanto falta para encher completamente?
|
| 10 |
+
- text: Compose an epic poem about the journey of a single grain of sand.
|
| 11 |
+
- text: Resuma os conceitos básicos e aplicações de um novo material científico.
|
| 12 |
+
- text: Explain the importance of the human microbiome.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
metrics:
|
| 14 |
- accuracy
|
| 15 |
pipeline_tag: text-classification
|
|
|
|
| 28 |
split: test
|
| 29 |
metrics:
|
| 30 |
- type: accuracy
|
| 31 |
+
value: 0.9908675799086758
|
| 32 |
name: Accuracy
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
---
|
| 34 |
|
| 35 |
# SetFit with ibm-granite/granite-embedding-107m-multilingual
|
|
|
|
| 48 |
- **Sentence Transformer body:** [ibm-granite/granite-embedding-107m-multilingual](https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual)
|
| 49 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 50 |
- **Maximum Sequence Length:** 512 tokens
|
| 51 |
+
- **Number of Classes:** 9 classes
|
| 52 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 53 |
<!-- - **Language:** Unknown -->
|
| 54 |
<!-- - **License:** Unknown -->
|
|
|
|
| 62 |
### Model Labels
|
| 63 |
| Label | Examples |
|
| 64 |
|:------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 65 |
+
| coding | <ul><li>'Desenvolva uma função que gere mapas de calor baseados em dados geoespaciais para visualização de clusters.'</li><li>'Crie um sistema que implemente um cache LRU (Least Recently Used) para otimizar buscas repetitivas.'</li><li>'Desenvolva uma função que gere todos os anagramas possíveis de uma palavra sem repetições redundantes.'</li></ul> |
|
| 66 |
+
| general_knowledge | <ul><li>'Which planets in the solar system have rings and what are they made of?'</li><li>'Describe the process of cell division including mitosis and meiosis.'</li><li>'How do vaccines develop herd immunity in populations?'</li></ul> |
|
| 67 |
+
| complex_reasoning | <ul><li>'Projete uma estratégia para otimizar a alocação de recursos em desastres naturais usando análise preditiva.'</li><li>'Develop an AI for cross-domain transfer learning that can generalize control policies from simulated environments to real-world robots.'</li><li>'Descreva as vantagens e desvantagens da utilização de contratos inteligentes para gestão de cadeias de suprimentos.'</li></ul> |
|
| 68 |
+
| summarization | <ul><li>'Extract and summarize the key lessons learned from multiple post-project reviews.'</li><li>'Resuma os principais conceitos de um curso online em administração.'</li><li>'Create a summary that captures the essential themes and motifs in a series of poems.'</li></ul> |
|
| 69 |
+
| extraction | <ul><li>"It's important to recognize the main technical hurdles the engineering team overcame during the last sprint."</li><li>'The task is to classify the types of user feedback from the beta test, organizing it by severity and feature area.'</li><li>'Analyze the primary factors contributing to the recent decline in user engagement on the platform.'</li></ul> |
|
| 70 |
+
| roleplay | <ul><li>'Finja ser um arqueólogo submarino explorando um navio naufragado cheio de tesouros.'</li><li>'Act as an archaeologist analyzing bone fragments to determine ancient diets.'</li><li>'Act as a diplomat negotiating trade terms with a foreign delegation hostile to your country.'</li></ul> |
|
| 71 |
+
| basic_reasoning | <ul><li>'Se hoje é 15 de março, que dia será daqui a 10 dias?'</li><li>'If an object travels 100 meters in 20 seconds, what is its speed in meters per second?'</li><li>'If the average of five numbers is 20, what is their sum?'</li></ul> |
|
| 72 |
+
| tool | <ul><li>'Retrieve the current weather forecast for Tokyo for the next 7 days.'</li><li>'Retrieve a business’s credit score and financial risk rating from a commercial database.'</li><li>'Busque restaurantes italianos abertos agora no Rio de Janeiro.'</li></ul> |
|
| 73 |
+
| creativity | <ul><li>'Describe a character who can taste emotions and how they use this ability.'</li><li>'Escreva uma crônica sobre o impacto da migração rural-urbana no comportamento social nas periferias.'</li><li>'Describe a society where storytelling is forbidden and the underground movements that resist this law.'</li></ul> |
|
| 74 |
|
| 75 |
## Evaluation
|
| 76 |
|
| 77 |
### Metrics
|
| 78 |
| Label | Accuracy |
|
| 79 |
|:--------|:---------|
|
| 80 |
+
| **all** | 0.9909 |
|
| 81 |
|
| 82 |
## Uses
|
| 83 |
|
|
|
|
| 97 |
# Download from the 🤗 Hub
|
| 98 |
model = SetFitModel.from_pretrained("cnmoro/prompt-router")
|
| 99 |
# Run inference
|
| 100 |
+
preds = model("Explain the importance of the human microbiome.")
|
| 101 |
```
|
| 102 |
|
| 103 |
<!--
|
|
|
|
| 129 |
### Training Set Metrics
|
| 130 |
| Training set | Min | Median | Max |
|
| 131 |
|:-------------|:----|:--------|:----|
|
| 132 |
+
| Word count | 5 | 14.5374 | 38 |
|
| 133 |
|
| 134 |
| Label | Training Sample Count |
|
| 135 |
|:------------------|:----------------------|
|
| 136 |
+
| extraction | 284 |
|
| 137 |
+
| coding | 150 |
|
| 138 |
+
| creativity | 169 |
|
| 139 |
+
| tool | 171 |
|
| 140 |
+
| general_knowledge | 175 |
|
| 141 |
+
| basic_reasoning | 158 |
|
| 142 |
+
| roleplay | 173 |
|
| 143 |
+
| summarization | 172 |
|
| 144 |
+
| complex_reasoning | 152 |
|
| 145 |
|
| 146 |
### Training Hyperparameters
|
| 147 |
- batch_size: (8, 8)
|
|
|
|
| 165 |
### Training Results
|
| 166 |
| Epoch | Step | Training Loss | Validation Loss |
|
| 167 |
|:------:|:----:|:-------------:|:---------------:|
|
| 168 |
+
| 0.0004 | 1 | 0.2456 | - |
|
| 169 |
+
| 0.0208 | 50 | 0.2121 | - |
|
| 170 |
+
| 0.0417 | 100 | 0.212 | - |
|
| 171 |
+
| 0.0625 | 150 | 0.2158 | - |
|
| 172 |
+
| 0.0833 | 200 | 0.2074 | 0.1897 |
|
| 173 |
+
| 0.1042 | 250 | 0.2023 | - |
|
| 174 |
+
| 0.125 | 300 | 0.1833 | - |
|
| 175 |
+
| 0.1458 | 350 | 0.1766 | - |
|
| 176 |
+
| 0.1667 | 400 | 0.1602 | 0.1255 |
|
| 177 |
+
| 0.1875 | 450 | 0.1327 | - |
|
| 178 |
+
| 0.2083 | 500 | 0.1187 | - |
|
| 179 |
+
| 0.2292 | 550 | 0.0915 | - |
|
| 180 |
+
| 0.25 | 600 | 0.073 | 0.0499 |
|
| 181 |
+
| 0.2708 | 650 | 0.0618 | - |
|
| 182 |
+
| 0.2917 | 700 | 0.0575 | - |
|
| 183 |
+
| 0.3125 | 750 | 0.0559 | - |
|
| 184 |
+
| 0.3333 | 800 | 0.0463 | 0.0307 |
|
| 185 |
+
| 0.3542 | 850 | 0.0409 | - |
|
| 186 |
+
| 0.375 | 900 | 0.033 | - |
|
| 187 |
+
| 0.3958 | 950 | 0.0356 | - |
|
| 188 |
+
| 0.4167 | 1000 | 0.0331 | 0.0212 |
|
| 189 |
+
| 0.4375 | 1050 | 0.0353 | - |
|
| 190 |
+
| 0.4583 | 1100 | 0.0337 | - |
|
| 191 |
+
| 0.4792 | 1150 | 0.0326 | - |
|
| 192 |
+
| 0.5 | 1200 | 0.0274 | 0.0162 |
|
| 193 |
+
| 0.5208 | 1250 | 0.0281 | - |
|
| 194 |
+
| 0.5417 | 1300 | 0.0245 | - |
|
| 195 |
+
| 0.5625 | 1350 | 0.0235 | - |
|
| 196 |
+
| 0.5833 | 1400 | 0.0237 | 0.0130 |
|
| 197 |
+
| 0.6042 | 1450 | 0.0249 | - |
|
| 198 |
+
| 0.625 | 1500 | 0.0232 | - |
|
| 199 |
+
| 0.6458 | 1550 | 0.0196 | - |
|
| 200 |
+
| 0.6667 | 1600 | 0.0231 | 0.0114 |
|
| 201 |
+
| 0.6875 | 1650 | 0.0219 | - |
|
| 202 |
+
| 0.7083 | 1700 | 0.0198 | - |
|
| 203 |
+
| 0.7292 | 1750 | 0.0237 | - |
|
| 204 |
+
| 0.75 | 1800 | 0.0151 | 0.0104 |
|
| 205 |
+
| 0.7708 | 1850 | 0.0193 | - |
|
| 206 |
+
| 0.7917 | 1900 | 0.016 | - |
|
| 207 |
+
| 0.8125 | 1950 | 0.0214 | - |
|
| 208 |
+
| 0.8333 | 2000 | 0.0122 | 0.0090 |
|
| 209 |
+
| 0.8542 | 2050 | 0.016 | - |
|
| 210 |
+
| 0.875 | 2100 | 0.0152 | - |
|
| 211 |
+
| 0.8958 | 2150 | 0.0152 | - |
|
| 212 |
+
| 0.9167 | 2200 | 0.0157 | 0.0084 |
|
| 213 |
+
| 0.9375 | 2250 | 0.0174 | - |
|
| 214 |
+
| 0.9583 | 2300 | 0.0171 | - |
|
| 215 |
+
| 0.9792 | 2350 | 0.0136 | - |
|
| 216 |
+
| 1.0 | 2400 | 0.0123 | 0.0083 |
|
| 217 |
|
| 218 |
### Framework Versions
|
| 219 |
- Python: 3.11.11
|
| 220 |
- SetFit: 1.2.0.dev0
|
| 221 |
+
- Sentence Transformers: 5.0.0
|
| 222 |
+
- Transformers: 4.53.2
|
| 223 |
+
- PyTorch: 2.7.1+cu126
|
| 224 |
+
- Datasets: 3.2.0
|
| 225 |
+
- Tokenizers: 0.21.0
|
| 226 |
|
| 227 |
## Citation
|
| 228 |
|
config.json
CHANGED
|
@@ -19,7 +19,7 @@
|
|
| 19 |
"pad_token_id": 1,
|
| 20 |
"position_embedding_type": "absolute",
|
| 21 |
"torch_dtype": "float32",
|
| 22 |
-
"transformers_version": "4.
|
| 23 |
"type_vocab_size": 2,
|
| 24 |
"use_cache": true,
|
| 25 |
"vocab_size": 250002
|
|
|
|
| 19 |
"pad_token_id": 1,
|
| 20 |
"position_embedding_type": "absolute",
|
| 21 |
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.53.2",
|
| 23 |
"type_vocab_size": 2,
|
| 24 |
"use_cache": true,
|
| 25 |
"vocab_size": 250002
|
config_sentence_transformers.json
CHANGED
|
@@ -1,10 +1,14 @@
|
|
| 1 |
{
|
|
|
|
| 2 |
"__version__": {
|
| 3 |
-
"sentence_transformers": "
|
| 4 |
-
"transformers": "4.
|
| 5 |
-
"pytorch": "2.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
},
|
| 7 |
-
"prompts": {},
|
| 8 |
"default_prompt_name": null,
|
| 9 |
"similarity_fn_name": "cosine"
|
| 10 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"model_type": "SentenceTransformer",
|
| 3 |
"__version__": {
|
| 4 |
+
"sentence_transformers": "5.0.0",
|
| 5 |
+
"transformers": "4.53.2",
|
| 6 |
+
"pytorch": "2.7.1+cu126"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
},
|
|
|
|
| 12 |
"default_prompt_name": null,
|
| 13 |
"similarity_fn_name": "cosine"
|
| 14 |
}
|
config_setfit.json
CHANGED
|
@@ -1,13 +1,14 @@
|
|
| 1 |
{
|
| 2 |
"normalize_embeddings": false,
|
| 3 |
"labels": [
|
| 4 |
-
"
|
|
|
|
|
|
|
| 5 |
"tool",
|
| 6 |
"general_knowledge",
|
|
|
|
| 7 |
"roleplay",
|
| 8 |
-
"
|
| 9 |
-
"
|
| 10 |
-
"coding",
|
| 11 |
-
"basic_reasoning"
|
| 12 |
]
|
| 13 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"normalize_embeddings": false,
|
| 3 |
"labels": [
|
| 4 |
+
"extraction",
|
| 5 |
+
"coding",
|
| 6 |
+
"creativity",
|
| 7 |
"tool",
|
| 8 |
"general_knowledge",
|
| 9 |
+
"basic_reasoning",
|
| 10 |
"roleplay",
|
| 11 |
+
"summarization",
|
| 12 |
+
"complex_reasoning"
|
|
|
|
|
|
|
| 13 |
]
|
| 14 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 427988744
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:daac8d67133b1e9161d174dc9327bbc7c185d34b1b0b66e201d84c6d5d041483
|
| 3 |
size 427988744
|
model_head.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:221391f5090fdd0937071b7d658818b67e6c998633ac40560aa487dcfa5b6c3c
|
| 3 |
+
size 29167
|
sentence_bert_config.json
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
}
|