Commit
·
4127b6d
1
Parent(s):
e9bf3eb
Update train.py
Browse files
train.py
CHANGED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
from transformers import TFXLMRobertaModel, AutoTokenizer, TFAutoModel
|
| 4 |
+
from datasets import load_dataset, concatenate_datasets
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
import logging
|
| 7 |
+
from pyprojroot.here import here
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class mean_pooling_layer(tf.keras.layers.Layer):
|
| 12 |
+
def __init__(self):
|
| 13 |
+
super(mean_pooling_layer, self).__init__()
|
| 14 |
+
|
| 15 |
+
def call(self, inputs):
|
| 16 |
+
token_embeddings = inputs[0]
|
| 17 |
+
attention_mask = inputs[1]
|
| 18 |
+
input_mask_expanded = tf.cast(
|
| 19 |
+
tf.broadcast_to(tf.expand_dims(attention_mask, -1), tf.shape(token_embeddings)),
|
| 20 |
+
tf.float32
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
embeddings = tf.math.reduce_sum(token_embeddings * input_mask_expanded, axis=1) / tf.clip_by_value(tf.math.reduce_sum(input_mask_expanded, axis=1), 1e-9, tf.float32.max)
|
| 24 |
+
return embeddings
|
| 25 |
+
|
| 26 |
+
def get_config(self):
|
| 27 |
+
config = super(mean_pooling_layer, self).get_config()
|
| 28 |
+
return config
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def create_model():
|
| 32 |
+
base_student_model = TFAutoModel.from_pretrained("nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large",from_pt=True)
|
| 33 |
+
input_ids_en = tf.keras.layers.Input(shape=(256,),name='input_ids_en', dtype=tf.int32)
|
| 34 |
+
attention_mask_en = tf.keras.layers.Input(shape=(256,), name='attention_mask_en', dtype=tf.int32)
|
| 35 |
+
input_ids_id = tf.keras.layers.Input(shape=(256,),name='input_ids_id', dtype=tf.int32)
|
| 36 |
+
attention_mask_id = tf.keras.layers.Input(shape=(256,), name='attention_mask_id', dtype=tf.int32)
|
| 37 |
+
|
| 38 |
+
output_en = base_student_model.roberta(input_ids_en, attention_mask=attention_mask_en).last_hidden_state[:,0,:]
|
| 39 |
+
output_id = base_student_model.roberta(input_ids_id, attention_mask=attention_mask_id).last_hidden_state[:,0,:]
|
| 40 |
+
|
| 41 |
+
student_model = tf.keras.Model(inputs=[input_ids_en, attention_mask_en, input_ids_id, attention_mask_id], outputs=[output_en, output_id])
|
| 42 |
+
return student_model
|
| 43 |
+
|
| 44 |
+
class sentence_translation_metric(tf.keras.callbacks.Callback):
|
| 45 |
+
def on_epoch_end(self,epoch,logs):
|
| 46 |
+
embeddings_en, embeddings_id = self.model.predict(val_dataset, verbose=1)
|
| 47 |
+
# get the embeddings
|
| 48 |
+
# compute the cosine similarity between the two
|
| 49 |
+
#normalize the embeddings
|
| 50 |
+
embeddings_en = tf.math.l2_normalize(embeddings_en, axis=1)
|
| 51 |
+
embeddings_id = tf.math.l2_normalize(embeddings_id, axis=1)
|
| 52 |
+
similarity_matrix = tf.matmul(embeddings_en, embeddings_id, transpose_b=True)
|
| 53 |
+
# get the mean similarity
|
| 54 |
+
correct_en_id = 0
|
| 55 |
+
for i in range(similarity_matrix.shape[0]):
|
| 56 |
+
if tf.math.argmax(similarity_matrix[i]) == i:
|
| 57 |
+
correct_en_id += 1
|
| 58 |
+
|
| 59 |
+
similarity_matrix_T = tf.transpose(similarity_matrix)
|
| 60 |
+
correct_id_en = 0
|
| 61 |
+
for i in range(similarity_matrix_T.shape[0]):
|
| 62 |
+
if tf.math.argmax(similarity_matrix_T[i]) == i:
|
| 63 |
+
correct_id_en += 1
|
| 64 |
+
|
| 65 |
+
acc_en_id = correct_en_id / similarity_matrix.shape[0]
|
| 66 |
+
acc_id_en = correct_id_en / similarity_matrix_T.shape[0]
|
| 67 |
+
avg_acc = (acc_en_id + acc_id_en) / 2
|
| 68 |
+
print(f"translation accuracy from english to indonesian = {acc_en_id}")
|
| 69 |
+
print(f"translation accuracy from indonesian to english = {acc_id_en}")
|
| 70 |
+
print(f"average translation accuracy = {avg_acc}")
|
| 71 |
+
|
| 72 |
+
logs["val_acc_en_id"] = acc_en_id
|
| 73 |
+
logs["val_acc_id_en"] = acc_id_en
|
| 74 |
+
logs["val_avg_acc"] = avg_acc
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
|
| 78 |
+
def __init__(self, d_model, warmup_steps=100000):
|
| 79 |
+
super().__init__()
|
| 80 |
+
|
| 81 |
+
self.d_model = d_model
|
| 82 |
+
self.d_model = tf.cast(self.d_model, tf.float32)
|
| 83 |
+
|
| 84 |
+
self.warmup_steps = warmup_steps
|
| 85 |
+
|
| 86 |
+
def __call__(self, step):
|
| 87 |
+
step = tf.cast(step, dtype=tf.float32)
|
| 88 |
+
arg1 = tf.math.rsqrt(step)
|
| 89 |
+
arg2 = step * (self.warmup_steps ** -1.5)
|
| 90 |
+
|
| 91 |
+
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
if __name__ == "__main__":
|
| 95 |
+
num_data = 0
|
| 96 |
+
dataset = load_dataset("carlesoctav/en-id-parallel-sentences-embedding")
|
| 97 |
+
|
| 98 |
+
dataset_1 = dataset["combinedtech"]
|
| 99 |
+
|
| 100 |
+
for split in dataset:
|
| 101 |
+
dataset_1 = concatenate_datasets([dataset_1, dataset[split]])
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
batch_size = 384
|
| 105 |
+
dataset = dataset_1.train_test_split(test_size=0.01, shuffle=True)
|
| 106 |
+
train_dataset = dataset["train"]
|
| 107 |
+
val_dataset = dataset["test"]
|
| 108 |
+
print(val_dataset.shape)
|
| 109 |
+
|
| 110 |
+
train_dataset = train_dataset.to_tf_dataset(
|
| 111 |
+
columns=["input_ids_en", "attention_mask_en", "input_ids_id", "attention_mask_id"],
|
| 112 |
+
label_cols="target_embedding",
|
| 113 |
+
batch_size=batch_size,
|
| 114 |
+
).unbatch()
|
| 115 |
+
|
| 116 |
+
val_dataset = val_dataset.to_tf_dataset(
|
| 117 |
+
columns=["input_ids_en", "attention_mask_en", "input_ids_id", "attention_mask_id"],
|
| 118 |
+
label_cols="target_embedding",
|
| 119 |
+
batch_size=batch_size,
|
| 120 |
+
).unbatch()
|
| 121 |
+
|
| 122 |
+
#check feature
|
| 123 |
+
print(train_dataset.element_spec)
|
| 124 |
+
print(val_dataset.element_spec)
|
| 125 |
+
|
| 126 |
+
train_dataset = train_dataset.batch(batch_size, drop_remainder=True).cache()
|
| 127 |
+
val_dataset = val_dataset.batch(batch_size, drop_remainder=True).cache()
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
learning_rate = CustomSchedule(384)
|
| 131 |
+
|
| 132 |
+
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98,
|
| 133 |
+
epsilon=1e-9)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
loss = tf.keras.losses.MeanSquaredError()
|
| 138 |
+
|
| 139 |
+
date_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
| 140 |
+
output_path = here(f"disk/model/{date_time}/multiqa-mpnet-dot-v1.h5")
|
| 141 |
+
|
| 142 |
+
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(
|
| 143 |
+
filepath = output_path,
|
| 144 |
+
save_weights_only = True,
|
| 145 |
+
monitor = "val_avg_acc",
|
| 146 |
+
mode = 'auto',
|
| 147 |
+
verbose = 1,
|
| 148 |
+
save_best_only = True,
|
| 149 |
+
initial_value_threshold = 0.1
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
early_stopping = tf.keras.callbacks.EarlyStopping(
|
| 153 |
+
monitor = "val_avg_acc",
|
| 154 |
+
mode = 'auto',
|
| 155 |
+
restore_best_weights=False,
|
| 156 |
+
patience = 2,
|
| 157 |
+
verbose=1,
|
| 158 |
+
start_from_epoch = 25,
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
# tensor_board = tf.keras.callbacks.TensorBoard(
|
| 163 |
+
# log_dir = "gs://dicoding-capstone/output/logs/"+date_time
|
| 164 |
+
# )
|
| 165 |
+
|
| 166 |
+
csv_logger = tf.keras.callbacks.CSVLogger(
|
| 167 |
+
filename = here(f"disk/performance_logs/log-{date_time}.csv"),
|
| 168 |
+
separator = ",",
|
| 169 |
+
append = False
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
reduce_rl = tf.keras.callbacks.ReduceLROnPlateau(
|
| 173 |
+
monitor = "",
|
| 174 |
+
factor = 0.1,
|
| 175 |
+
patience = 2,
|
| 176 |
+
min_lr = 1e-6,
|
| 177 |
+
verbose = 1
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
callbacks = [sentence_translation_metric(), model_checkpoint, csv_logger,early_stopping]
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver("local")
|
| 185 |
+
tf.config.experimental_connect_to_cluster(cluster_resolver)
|
| 186 |
+
tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
|
| 187 |
+
strategy = tf.distribute.TPUStrategy(cluster_resolver)
|
| 188 |
+
|
| 189 |
+
with strategy.scope():
|
| 190 |
+
student_model = create_model()
|
| 191 |
+
student_model.compile(optimizer=optimizer, loss=loss)
|
| 192 |
+
|
| 193 |
+
student_model.fit(train_dataset, epochs=20, validation_data=val_dataset, callbacks=callbacks)
|
| 194 |
+
|
| 195 |
+
last_epoch_save = here(f"disk/model/last_epoch/{date_time}/multiqa-mpnet-dot-v1.h5")
|
| 196 |
+
student_model.save_weights(last_epoch_save)
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|