bullerwins commited on
Commit
8392ae5
·
verified ·
1 Parent(s): 525c887

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +346 -0
README.md ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507/blob/main/LICENSE
5
+ pipeline_tag: text-generation
6
+ base_model:
7
+ - Qwen/Qwen3-30B-A3B-Instruct-2507
8
+ ---
9
+
10
+ # Qwen3-30B-A3B-Instruct-2507
11
+ <a href="https://chat.qwen.ai/?model=Qwen3-30B-A3B-2507" target="_blank" style="margin: 2px;">
12
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
13
+ </a>
14
+
15
+ ## Highlights
16
+
17
+ We introduce the updated version of the **Qwen3-30B-A3B non-thinking mode**, named **Qwen3-30B-A3B-Instruct-2507**, featuring the following key enhancements:
18
+
19
+ - **Significant improvements** in general capabilities, including **instruction following, logical reasoning, text comprehension, mathematics, science, coding and tool usage**.
20
+ - **Substantial gains** in long-tail knowledge coverage across **multiple languages**.
21
+ - **Markedly better alignment** with user preferences in **subjective and open-ended tasks**, enabling more helpful responses and higher-quality text generation.
22
+ - **Enhanced capabilities** in **256K long-context understanding**.
23
+
24
+ ![image/jpeg](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-2507/Qwen3-30B-A3B-Instruct-2507.jpeg)
25
+
26
+ ## Model Overview
27
+
28
+ **Qwen3-30B-A3B-Instruct-2507** has the following features:
29
+ - Type: Causal Language Models
30
+ - Training Stage: Pretraining & Post-training
31
+ - Number of Parameters: 30.5B in total and 3.3B activated
32
+ - Number of Paramaters (Non-Embedding): 29.9B
33
+ - Number of Layers: 48
34
+ - Number of Attention Heads (GQA): 32 for Q and 4 for KV
35
+ - Number of Experts: 128
36
+ - Number of Activated Experts: 8
37
+ - Context Length: **262,144 natively**.
38
+
39
+ **NOTE: This model supports only non-thinking mode and does not generate ``<think></think>`` blocks in its output. Meanwhile, specifying `enable_thinking=False` is no longer required.**
40
+
41
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
42
+
43
+
44
+ ## Performance
45
+
46
+ | | Deepseek-V3-0324 | GPT-4o-0327 | Gemini-2.5-Flash Non-Thinking | Qwen3-235B-A22B Non-Thinking | Qwen3-30B-A3B Non-Thinking | Qwen3-30B-A3B-Instruct-2507 |
47
+ |--- | --- | --- | --- | --- | --- | --- |
48
+ | **Knowledge** | | | | | | |
49
+ | MMLU-Pro | **81.2** | 79.8 | 81.1 | 75.2 | 69.1 | 78.4 |
50
+ | MMLU-Redux | 90.4 | **91.3** | 90.6 | 89.2 | 84.1 | 89.3 |
51
+ | GPQA | 68.4 | 66.9 | **78.3** | 62.9 | 54.8 | 70.4 |
52
+ | SuperGPQA | **57.3** | 51.0 | 54.6 | 48.2 | 42.2 | 53.4 |
53
+ | **Reasoning** | | | | | | |
54
+ | AIME25 | 46.6 | 26.7 | **61.6** | 24.7 | 21.6 | 61.3 |
55
+ | HMMT25 | 27.5 | 7.9 | **45.8** | 10.0 | 12.0 | 43.0 |
56
+ | ZebraLogic | 83.4 | 52.6 | 57.9 | 37.7 | 33.2 | **90.0** |
57
+ | LiveBench 20241125 | 66.9 | 63.7 | **69.1** | 62.5 | 59.4 | 69.0 |
58
+ | **Coding** | | | | | | |
59
+ | LiveCodeBench v6 (25.02-25.05) | **45.2** | 35.8 | 40.1 | 32.9 | 29.0 | 43.2 |
60
+ | MultiPL-E | 82.2 | 82.7 | 77.7 | 79.3 | 74.6 | **83.8** |
61
+ | Aider-Polyglot | 55.1 | 45.3 | 44.0 | **59.6** | 24.4 | 35.6 |
62
+ | **Alignment** | | | | | | |
63
+ | IFEval | 82.3 | 83.9 | 84.3 | 83.2 | 83.7 | **84.7** |
64
+ | Arena-Hard v2* | 45.6 | 61.9 | 58.3 | 52.0 | 24.8 | **69.0** |
65
+ | Creative Writing v3 | 81.6 | 84.9 | 84.6 | 80.4 | 68.1 | **86.0** |
66
+ | WritingBench | 74.5 | 75.5 | 80.5 | 77.0 | 72.2 | **85.5** |
67
+ | **Agent** | | | | | | |
68
+ | BFCL-v3 | 64.7 | 66.5 | 66.1 | **68.0** | 58.6 | 65.1 |
69
+ | TAU1-Retail | 49.6 | 60.3# | **65.2** | 65.2 | 38.3 | 59.1 |
70
+ | TAU1-Airline | 32.0 | 42.8# | **48.0** | 32.0 | 18.0 | 40.0 |
71
+ | TAU2-Retail | **71.1** | 66.7# | 64.3 | 64.9 | 31.6 | 57.0 |
72
+ | TAU2-Airline | 36.0 | 42.0# | **42.5** | 36.0 | 18.0 | 38.0 |
73
+ | TAU2-Telecom | **34.0** | 29.8# | 16.9 | 24.6 | 18.4 | 12.3 |
74
+ | **Multilingualism** | | | | | | |
75
+ | MultiIF | 66.5 | 70.4 | 69.4 | 70.2 | **70.8** | 67.9 |
76
+ | MMLU-ProX | 75.8 | 76.2 | **78.3** | 73.2 | 65.1 | 72.0 |
77
+ | INCLUDE | 80.1 | 82.1 | **83.8** | 75.6 | 67.8 | 71.9 |
78
+ | PolyMATH | 32.2 | 25.5 | 41.9 | 27.0 | 23.3 | **43.1** |
79
+
80
+ *: For reproducibility, we report the win rates evaluated by GPT-4.1.
81
+
82
+ \#: Results were generated using GPT-4o-20241120, as access to the native function calling API of GPT-4o-0327 was unavailable.
83
+
84
+
85
+ ## Quickstart
86
+
87
+ The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
88
+
89
+ With `transformers<4.51.0`, you will encounter the following error:
90
+ ```
91
+ KeyError: 'qwen3_moe'
92
+ ```
93
+
94
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
95
+ ```python
96
+ from transformers import AutoModelForCausalLM, AutoTokenizer
97
+
98
+ model_name = "Qwen/Qwen3-30B-A3B-Instruct-2507"
99
+
100
+ # load the tokenizer and the model
101
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
102
+ model = AutoModelForCausalLM.from_pretrained(
103
+ model_name,
104
+ torch_dtype="auto",
105
+ device_map="auto"
106
+ )
107
+
108
+ # prepare the model input
109
+ prompt = "Give me a short introduction to large language model."
110
+ messages = [
111
+ {"role": "user", "content": prompt}
112
+ ]
113
+ text = tokenizer.apply_chat_template(
114
+ messages,
115
+ tokenize=False,
116
+ add_generation_prompt=True,
117
+ )
118
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
119
+
120
+ # conduct text completion
121
+ generated_ids = model.generate(
122
+ **model_inputs,
123
+ max_new_tokens=16384
124
+ )
125
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
126
+
127
+ content = tokenizer.decode(output_ids, skip_special_tokens=True)
128
+
129
+ print("content:", content)
130
+ ```
131
+
132
+ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
133
+ - SGLang:
134
+ ```shell
135
+ python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B-Instruct-2507 --context-length 262144
136
+ ```
137
+ - vLLM:
138
+ ```shell
139
+ vllm serve Qwen/Qwen3-30B-A3B-Instruct-2507 --max-model-len 262144
140
+ ```
141
+
142
+ **Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as `32,768`.**
143
+
144
+ For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
145
+
146
+ ## Agentic Use
147
+
148
+ Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
149
+
150
+ To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
151
+ ```python
152
+ from qwen_agent.agents import Assistant
153
+
154
+ # Define LLM
155
+ llm_cfg = {
156
+ 'model': 'Qwen3-30B-A3B-Instruct-2507',
157
+
158
+ # Use a custom endpoint compatible with OpenAI API:
159
+ 'model_server': 'http://localhost:8000/v1', # api_base
160
+ 'api_key': 'EMPTY',
161
+ }
162
+
163
+ # Define Tools
164
+ tools = [
165
+ {'mcpServers': { # You can specify the MCP configuration file
166
+ 'time': {
167
+ 'command': 'uvx',
168
+ 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
169
+ },
170
+ "fetch": {
171
+ "command": "uvx",
172
+ "args": ["mcp-server-fetch"]
173
+ }
174
+ }
175
+ },
176
+ 'code_interpreter', # Built-in tools
177
+ ]
178
+
179
+ # Define Agent
180
+ bot = Assistant(llm=llm_cfg, function_list=tools)
181
+
182
+ # Streaming generation
183
+ messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
184
+ for responses in bot.run(messages=messages):
185
+ pass
186
+ print(responses)
187
+ ```
188
+
189
+ ## Processing Ultra-Long Texts
190
+
191
+ To support **ultra-long context processing** (up to **1 million tokens**), we integrate two key techniques:
192
+
193
+ - **[Dual Chunk Attention](https://arxiv.org/abs/2402.17463) (DCA)**: A length extrapolation method that splits long sequences into manageable chunks while preserving global coherence.
194
+ - **[MInference](https://arxiv.org/abs/2407.02490)**: A sparse attention mechanism that reduces computational overhead by focusing on critical token interactions.
195
+
196
+ Together, these innovations significantly improve both **generation quality** and **inference efficiency** for sequences beyond 256K tokens. On sequences approaching 1M tokens, the system achieves up to a **3× speedup** compared to standard attention implementations.
197
+
198
+ For full technical details, see the [Qwen2.5-1M Technical Report](https://arxiv.org/abs/2501.15383).
199
+
200
+ ### How to Enable 1M Token Context
201
+
202
+ > [!NOTE]
203
+ > To effectively process a 1 million token context, users will require approximately **240 GB** of total GPU memory. This accounts for model weights, KV-cache storage, and peak activation memory demands.
204
+
205
+ #### Step 1: Update Configuration File
206
+
207
+ Download the model and replace the content of your `config.json` with `config_1m.json`, which includes the config for length extrapolation and sparse attention.
208
+
209
+ ```bash
210
+ export MODELNAME=Qwen3-30B-A3B-Instruct-2507
211
+ huggingface-cli download Qwen/${MODELNAME} --local-dir ${MODELNAME}
212
+ mv ${MODELNAME}/config.json ${MODELNAME}/config.json.bak
213
+ mv ${MODELNAME}/config_1m.json ${MODELNAME}/config.json
214
+ ```
215
+
216
+ #### Step 2: Launch Model Server
217
+
218
+ After updating the config, proceed with either **vLLM** or **SGLang** for serving the model.
219
+
220
+ #### Option 1: Using vLLM
221
+
222
+ To run Qwen with 1M context support:
223
+
224
+ ```bash
225
+ pip install -U vllm \
226
+ --torch-backend=auto \
227
+ --extra-index-url https://wheels.vllm.ai/nightly
228
+ ```
229
+
230
+ Then launch the server with Dual Chunk Flash Attention enabled:
231
+
232
+ ```bash
233
+ VLLM_ATTENTION_BACKEND=DUAL_CHUNK_FLASH_ATTN VLLM_USE_V1=0 \
234
+ vllm serve ./Qwen3-30B-A3B-Instruct-2507 \
235
+ --tensor-parallel-size 4 \
236
+ --max-model-len 1010000 \
237
+ --enable-chunked-prefill \
238
+ --max-num-batched-tokens 131072 \
239
+ --enforce-eager \
240
+ --max-num-seqs 1 \
241
+ --gpu-memory-utilization 0.85
242
+ ```
243
+
244
+ ##### Key Parameters
245
+
246
+ | Parameter | Purpose |
247
+ |--------|--------|
248
+ | `VLLM_ATTENTION_BACKEND=DUAL_CHUNK_FLASH_ATTN` | Enables the custom attention kernel for long-context efficiency |
249
+ | `--max-model-len 1010000` | Sets maximum context length to ~1M tokens |
250
+ | `--enable-chunked-prefill` | Allows chunked prefill for very long inputs (avoids OOM) |
251
+ | `--max-num-batched-tokens 131072` | Controls batch size during prefill; balances throughput and memory |
252
+ | `--enforce-eager` | Disables CUDA graph capture (required for dual chunk attention) |
253
+ | `--max-num-seqs 1` | Limits concurrent sequences due to extreme memory usage |
254
+ | `--gpu-memory-utilization 0.85` | Set the fraction of GPU memory to be used for the model executor |
255
+
256
+ #### Option 2: Using SGLang
257
+
258
+ First, clone and install the specialized branch:
259
+
260
+ ```bash
261
+ git clone https://github.com/sgl-project/sglang.git
262
+ cd sglang
263
+ pip install -e "python[all]"
264
+ ```
265
+
266
+ Launch the server with DCA support:
267
+
268
+ ```bash
269
+ python3 -m sglang.launch_server \
270
+ --model-path ./Qwen3-30B-A3B-Instruct-2507 \
271
+ --context-length 1010000 \
272
+ --mem-frac 0.75 \
273
+ --attention-backend dual_chunk_flash_attn \
274
+ --tp 4 \
275
+ --chunked-prefill-size 131072
276
+ ```
277
+
278
+ ##### Key Parameters
279
+
280
+ | Parameter | Purpose |
281
+ |---------|--------|
282
+ | `--attention-backend dual_chunk_flash_attn` | Activates Dual Chunk Flash Attention |
283
+ | `--context-length 1010000` | Defines max input length |
284
+ | `--mem-frac 0.75` | The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors. |
285
+ | `--tp 4` | Tensor parallelism size (matches model sharding) |
286
+ | `--chunked-prefill-size 131072` | Prefill chunk size for handling long inputs without OOM |
287
+
288
+ #### Troubleshooting:
289
+
290
+ 1. Encountering the error: "The model's max sequence length (xxxxx) is larger than the maximum number of tokens that can be stored in the KV cache." or "RuntimeError: Not enough memory. Please try to increase --mem-fraction-static."
291
+
292
+ The VRAM reserved for the KV cache is insufficient.
293
+ - vLLM: Consider reducing the ``max_model_len`` or increasing the ``tensor_parallel_size`` and ``gpu_memory_utilization``. Alternatively, you can reduce ``max_num_batched_tokens``, although this may significantly slow down inference.
294
+ - SGLang: Consider reducing the ``context-length`` or increasing the ``tp`` and ``mem-frac``. Alternatively, you can reduce ``chunked-prefill-size``, although this may significantly slow down inference.
295
+
296
+ 2. Encountering the error: "torch.OutOfMemoryError: CUDA out of memory."
297
+
298
+ The VRAM reserved for activation weights is insufficient. You can try lowering ``gpu_memory_utilization`` or ``mem-frac``, but be aware that this might reduce the VRAM available for the KV cache.
299
+
300
+ 3. Encountering the error: "Input prompt (xxxxx tokens) + lookahead slots (0) is too long and exceeds the capacity of the block manager." or "The input (xxx xtokens) is longer than the model's context length (xxx tokens)."
301
+
302
+ The input is too lengthy. Consider using a shorter sequence or increasing the ``max_model_len`` or ``context-length``.
303
+
304
+ #### Long-Context Performance
305
+
306
+ We test the model on an 1M version of the [RULER](https://arxiv.org/abs/2404.06654) benchmark.
307
+
308
+ | Model Name | Acc avg | 4k | 8k | 16k | 32k | 64k | 96k | 128k | 192k | 256k | 384k | 512k | 640k | 768k | 896k | 1000k |
309
+ |---------------------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
310
+ | Qwen3-30B-A3B (Non-Thinking) | 72.0 | 97.1 | 96.1 | 95.0 | 92.2 | 82.6 | 79.7 | 76.9 | 70.2 | 66.3 | 61.9 | 55.4 | 52.6 | 51.5 | 52.0 | 50.9 |
311
+ | Qwen3-30B-A3B-Instruct-2507 (Full Attention) | 86.8 | 98.0 | 96.7 | 96.9 | 97.2 | 93.4 | 91.0 | 89.1 | 89.8 | 82.5 | 83.6 | 78.4 | 79.7 | 77.6 | 75.7 | 72.8 |
312
+ | Qwen3-30B-A3B-Instruct-2507 (Sparse Attention) | 86.8 | 98.0 | 97.1 | 96.3 | 95.1 | 93.6 | 92.5 | 88.1 | 87.7 | 82.9 | 85.7 | 80.7 | 80.0 | 76.9 | 75.5 | 72.2 |
313
+
314
+
315
+ * All models are evaluated with Dual Chunk Attention enabled.
316
+ * Since the evaluation is time-consuming, we use 260 samples for each length (13 sub-tasks, 20 samples for each).
317
+
318
+ ## Best Practices
319
+
320
+ To achieve optimal performance, we recommend the following settings:
321
+
322
+ 1. **Sampling Parameters**:
323
+ - We suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
324
+ - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
325
+
326
+ 2. **Adequate Output Length**: We recommend using an output length of 16,384 tokens for most queries, which is adequate for instruct models.
327
+
328
+ 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
329
+ - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
330
+ - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
331
+
332
+ ### Citation
333
+
334
+ If you find our work helpful, feel free to give us a cite.
335
+
336
+ ```
337
+ @misc{qwen3technicalreport,
338
+ title={Qwen3 Technical Report},
339
+ author={Qwen Team},
340
+ year={2025},
341
+ eprint={2505.09388},
342
+ archivePrefix={arXiv},
343
+ primaryClass={cs.CL},
344
+ url={https://arxiv.org/abs/2505.09388},
345
+ }
346
+ ```