Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507/blob/main/LICENSE
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
base_model:
|
| 7 |
+
- Qwen/Qwen3-30B-A3B-Instruct-2507
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# Qwen3-30B-A3B-Instruct-2507
|
| 11 |
+
<a href="https://chat.qwen.ai/?model=Qwen3-30B-A3B-2507" target="_blank" style="margin: 2px;">
|
| 12 |
+
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
|
| 13 |
+
</a>
|
| 14 |
+
|
| 15 |
+
## Highlights
|
| 16 |
+
|
| 17 |
+
We introduce the updated version of the **Qwen3-30B-A3B non-thinking mode**, named **Qwen3-30B-A3B-Instruct-2507**, featuring the following key enhancements:
|
| 18 |
+
|
| 19 |
+
- **Significant improvements** in general capabilities, including **instruction following, logical reasoning, text comprehension, mathematics, science, coding and tool usage**.
|
| 20 |
+
- **Substantial gains** in long-tail knowledge coverage across **multiple languages**.
|
| 21 |
+
- **Markedly better alignment** with user preferences in **subjective and open-ended tasks**, enabling more helpful responses and higher-quality text generation.
|
| 22 |
+
- **Enhanced capabilities** in **256K long-context understanding**.
|
| 23 |
+
|
| 24 |
+

|
| 25 |
+
|
| 26 |
+
## Model Overview
|
| 27 |
+
|
| 28 |
+
**Qwen3-30B-A3B-Instruct-2507** has the following features:
|
| 29 |
+
- Type: Causal Language Models
|
| 30 |
+
- Training Stage: Pretraining & Post-training
|
| 31 |
+
- Number of Parameters: 30.5B in total and 3.3B activated
|
| 32 |
+
- Number of Paramaters (Non-Embedding): 29.9B
|
| 33 |
+
- Number of Layers: 48
|
| 34 |
+
- Number of Attention Heads (GQA): 32 for Q and 4 for KV
|
| 35 |
+
- Number of Experts: 128
|
| 36 |
+
- Number of Activated Experts: 8
|
| 37 |
+
- Context Length: **262,144 natively**.
|
| 38 |
+
|
| 39 |
+
**NOTE: This model supports only non-thinking mode and does not generate ``<think></think>`` blocks in its output. Meanwhile, specifying `enable_thinking=False` is no longer required.**
|
| 40 |
+
|
| 41 |
+
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## Performance
|
| 45 |
+
|
| 46 |
+
| | Deepseek-V3-0324 | GPT-4o-0327 | Gemini-2.5-Flash Non-Thinking | Qwen3-235B-A22B Non-Thinking | Qwen3-30B-A3B Non-Thinking | Qwen3-30B-A3B-Instruct-2507 |
|
| 47 |
+
|--- | --- | --- | --- | --- | --- | --- |
|
| 48 |
+
| **Knowledge** | | | | | | |
|
| 49 |
+
| MMLU-Pro | **81.2** | 79.8 | 81.1 | 75.2 | 69.1 | 78.4 |
|
| 50 |
+
| MMLU-Redux | 90.4 | **91.3** | 90.6 | 89.2 | 84.1 | 89.3 |
|
| 51 |
+
| GPQA | 68.4 | 66.9 | **78.3** | 62.9 | 54.8 | 70.4 |
|
| 52 |
+
| SuperGPQA | **57.3** | 51.0 | 54.6 | 48.2 | 42.2 | 53.4 |
|
| 53 |
+
| **Reasoning** | | | | | | |
|
| 54 |
+
| AIME25 | 46.6 | 26.7 | **61.6** | 24.7 | 21.6 | 61.3 |
|
| 55 |
+
| HMMT25 | 27.5 | 7.9 | **45.8** | 10.0 | 12.0 | 43.0 |
|
| 56 |
+
| ZebraLogic | 83.4 | 52.6 | 57.9 | 37.7 | 33.2 | **90.0** |
|
| 57 |
+
| LiveBench 20241125 | 66.9 | 63.7 | **69.1** | 62.5 | 59.4 | 69.0 |
|
| 58 |
+
| **Coding** | | | | | | |
|
| 59 |
+
| LiveCodeBench v6 (25.02-25.05) | **45.2** | 35.8 | 40.1 | 32.9 | 29.0 | 43.2 |
|
| 60 |
+
| MultiPL-E | 82.2 | 82.7 | 77.7 | 79.3 | 74.6 | **83.8** |
|
| 61 |
+
| Aider-Polyglot | 55.1 | 45.3 | 44.0 | **59.6** | 24.4 | 35.6 |
|
| 62 |
+
| **Alignment** | | | | | | |
|
| 63 |
+
| IFEval | 82.3 | 83.9 | 84.3 | 83.2 | 83.7 | **84.7** |
|
| 64 |
+
| Arena-Hard v2* | 45.6 | 61.9 | 58.3 | 52.0 | 24.8 | **69.0** |
|
| 65 |
+
| Creative Writing v3 | 81.6 | 84.9 | 84.6 | 80.4 | 68.1 | **86.0** |
|
| 66 |
+
| WritingBench | 74.5 | 75.5 | 80.5 | 77.0 | 72.2 | **85.5** |
|
| 67 |
+
| **Agent** | | | | | | |
|
| 68 |
+
| BFCL-v3 | 64.7 | 66.5 | 66.1 | **68.0** | 58.6 | 65.1 |
|
| 69 |
+
| TAU1-Retail | 49.6 | 60.3# | **65.2** | 65.2 | 38.3 | 59.1 |
|
| 70 |
+
| TAU1-Airline | 32.0 | 42.8# | **48.0** | 32.0 | 18.0 | 40.0 |
|
| 71 |
+
| TAU2-Retail | **71.1** | 66.7# | 64.3 | 64.9 | 31.6 | 57.0 |
|
| 72 |
+
| TAU2-Airline | 36.0 | 42.0# | **42.5** | 36.0 | 18.0 | 38.0 |
|
| 73 |
+
| TAU2-Telecom | **34.0** | 29.8# | 16.9 | 24.6 | 18.4 | 12.3 |
|
| 74 |
+
| **Multilingualism** | | | | | | |
|
| 75 |
+
| MultiIF | 66.5 | 70.4 | 69.4 | 70.2 | **70.8** | 67.9 |
|
| 76 |
+
| MMLU-ProX | 75.8 | 76.2 | **78.3** | 73.2 | 65.1 | 72.0 |
|
| 77 |
+
| INCLUDE | 80.1 | 82.1 | **83.8** | 75.6 | 67.8 | 71.9 |
|
| 78 |
+
| PolyMATH | 32.2 | 25.5 | 41.9 | 27.0 | 23.3 | **43.1** |
|
| 79 |
+
|
| 80 |
+
*: For reproducibility, we report the win rates evaluated by GPT-4.1.
|
| 81 |
+
|
| 82 |
+
\#: Results were generated using GPT-4o-20241120, as access to the native function calling API of GPT-4o-0327 was unavailable.
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
## Quickstart
|
| 86 |
+
|
| 87 |
+
The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
|
| 88 |
+
|
| 89 |
+
With `transformers<4.51.0`, you will encounter the following error:
|
| 90 |
+
```
|
| 91 |
+
KeyError: 'qwen3_moe'
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
|
| 95 |
+
```python
|
| 96 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 97 |
+
|
| 98 |
+
model_name = "Qwen/Qwen3-30B-A3B-Instruct-2507"
|
| 99 |
+
|
| 100 |
+
# load the tokenizer and the model
|
| 101 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 102 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 103 |
+
model_name,
|
| 104 |
+
torch_dtype="auto",
|
| 105 |
+
device_map="auto"
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# prepare the model input
|
| 109 |
+
prompt = "Give me a short introduction to large language model."
|
| 110 |
+
messages = [
|
| 111 |
+
{"role": "user", "content": prompt}
|
| 112 |
+
]
|
| 113 |
+
text = tokenizer.apply_chat_template(
|
| 114 |
+
messages,
|
| 115 |
+
tokenize=False,
|
| 116 |
+
add_generation_prompt=True,
|
| 117 |
+
)
|
| 118 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 119 |
+
|
| 120 |
+
# conduct text completion
|
| 121 |
+
generated_ids = model.generate(
|
| 122 |
+
**model_inputs,
|
| 123 |
+
max_new_tokens=16384
|
| 124 |
+
)
|
| 125 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 126 |
+
|
| 127 |
+
content = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 128 |
+
|
| 129 |
+
print("content:", content)
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
|
| 133 |
+
- SGLang:
|
| 134 |
+
```shell
|
| 135 |
+
python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B-Instruct-2507 --context-length 262144
|
| 136 |
+
```
|
| 137 |
+
- vLLM:
|
| 138 |
+
```shell
|
| 139 |
+
vllm serve Qwen/Qwen3-30B-A3B-Instruct-2507 --max-model-len 262144
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
**Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as `32,768`.**
|
| 143 |
+
|
| 144 |
+
For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
|
| 145 |
+
|
| 146 |
+
## Agentic Use
|
| 147 |
+
|
| 148 |
+
Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
|
| 149 |
+
|
| 150 |
+
To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
|
| 151 |
+
```python
|
| 152 |
+
from qwen_agent.agents import Assistant
|
| 153 |
+
|
| 154 |
+
# Define LLM
|
| 155 |
+
llm_cfg = {
|
| 156 |
+
'model': 'Qwen3-30B-A3B-Instruct-2507',
|
| 157 |
+
|
| 158 |
+
# Use a custom endpoint compatible with OpenAI API:
|
| 159 |
+
'model_server': 'http://localhost:8000/v1', # api_base
|
| 160 |
+
'api_key': 'EMPTY',
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
# Define Tools
|
| 164 |
+
tools = [
|
| 165 |
+
{'mcpServers': { # You can specify the MCP configuration file
|
| 166 |
+
'time': {
|
| 167 |
+
'command': 'uvx',
|
| 168 |
+
'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
|
| 169 |
+
},
|
| 170 |
+
"fetch": {
|
| 171 |
+
"command": "uvx",
|
| 172 |
+
"args": ["mcp-server-fetch"]
|
| 173 |
+
}
|
| 174 |
+
}
|
| 175 |
+
},
|
| 176 |
+
'code_interpreter', # Built-in tools
|
| 177 |
+
]
|
| 178 |
+
|
| 179 |
+
# Define Agent
|
| 180 |
+
bot = Assistant(llm=llm_cfg, function_list=tools)
|
| 181 |
+
|
| 182 |
+
# Streaming generation
|
| 183 |
+
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
|
| 184 |
+
for responses in bot.run(messages=messages):
|
| 185 |
+
pass
|
| 186 |
+
print(responses)
|
| 187 |
+
```
|
| 188 |
+
|
| 189 |
+
## Processing Ultra-Long Texts
|
| 190 |
+
|
| 191 |
+
To support **ultra-long context processing** (up to **1 million tokens**), we integrate two key techniques:
|
| 192 |
+
|
| 193 |
+
- **[Dual Chunk Attention](https://arxiv.org/abs/2402.17463) (DCA)**: A length extrapolation method that splits long sequences into manageable chunks while preserving global coherence.
|
| 194 |
+
- **[MInference](https://arxiv.org/abs/2407.02490)**: A sparse attention mechanism that reduces computational overhead by focusing on critical token interactions.
|
| 195 |
+
|
| 196 |
+
Together, these innovations significantly improve both **generation quality** and **inference efficiency** for sequences beyond 256K tokens. On sequences approaching 1M tokens, the system achieves up to a **3× speedup** compared to standard attention implementations.
|
| 197 |
+
|
| 198 |
+
For full technical details, see the [Qwen2.5-1M Technical Report](https://arxiv.org/abs/2501.15383).
|
| 199 |
+
|
| 200 |
+
### How to Enable 1M Token Context
|
| 201 |
+
|
| 202 |
+
> [!NOTE]
|
| 203 |
+
> To effectively process a 1 million token context, users will require approximately **240 GB** of total GPU memory. This accounts for model weights, KV-cache storage, and peak activation memory demands.
|
| 204 |
+
|
| 205 |
+
#### Step 1: Update Configuration File
|
| 206 |
+
|
| 207 |
+
Download the model and replace the content of your `config.json` with `config_1m.json`, which includes the config for length extrapolation and sparse attention.
|
| 208 |
+
|
| 209 |
+
```bash
|
| 210 |
+
export MODELNAME=Qwen3-30B-A3B-Instruct-2507
|
| 211 |
+
huggingface-cli download Qwen/${MODELNAME} --local-dir ${MODELNAME}
|
| 212 |
+
mv ${MODELNAME}/config.json ${MODELNAME}/config.json.bak
|
| 213 |
+
mv ${MODELNAME}/config_1m.json ${MODELNAME}/config.json
|
| 214 |
+
```
|
| 215 |
+
|
| 216 |
+
#### Step 2: Launch Model Server
|
| 217 |
+
|
| 218 |
+
After updating the config, proceed with either **vLLM** or **SGLang** for serving the model.
|
| 219 |
+
|
| 220 |
+
#### Option 1: Using vLLM
|
| 221 |
+
|
| 222 |
+
To run Qwen with 1M context support:
|
| 223 |
+
|
| 224 |
+
```bash
|
| 225 |
+
pip install -U vllm \
|
| 226 |
+
--torch-backend=auto \
|
| 227 |
+
--extra-index-url https://wheels.vllm.ai/nightly
|
| 228 |
+
```
|
| 229 |
+
|
| 230 |
+
Then launch the server with Dual Chunk Flash Attention enabled:
|
| 231 |
+
|
| 232 |
+
```bash
|
| 233 |
+
VLLM_ATTENTION_BACKEND=DUAL_CHUNK_FLASH_ATTN VLLM_USE_V1=0 \
|
| 234 |
+
vllm serve ./Qwen3-30B-A3B-Instruct-2507 \
|
| 235 |
+
--tensor-parallel-size 4 \
|
| 236 |
+
--max-model-len 1010000 \
|
| 237 |
+
--enable-chunked-prefill \
|
| 238 |
+
--max-num-batched-tokens 131072 \
|
| 239 |
+
--enforce-eager \
|
| 240 |
+
--max-num-seqs 1 \
|
| 241 |
+
--gpu-memory-utilization 0.85
|
| 242 |
+
```
|
| 243 |
+
|
| 244 |
+
##### Key Parameters
|
| 245 |
+
|
| 246 |
+
| Parameter | Purpose |
|
| 247 |
+
|--------|--------|
|
| 248 |
+
| `VLLM_ATTENTION_BACKEND=DUAL_CHUNK_FLASH_ATTN` | Enables the custom attention kernel for long-context efficiency |
|
| 249 |
+
| `--max-model-len 1010000` | Sets maximum context length to ~1M tokens |
|
| 250 |
+
| `--enable-chunked-prefill` | Allows chunked prefill for very long inputs (avoids OOM) |
|
| 251 |
+
| `--max-num-batched-tokens 131072` | Controls batch size during prefill; balances throughput and memory |
|
| 252 |
+
| `--enforce-eager` | Disables CUDA graph capture (required for dual chunk attention) |
|
| 253 |
+
| `--max-num-seqs 1` | Limits concurrent sequences due to extreme memory usage |
|
| 254 |
+
| `--gpu-memory-utilization 0.85` | Set the fraction of GPU memory to be used for the model executor |
|
| 255 |
+
|
| 256 |
+
#### Option 2: Using SGLang
|
| 257 |
+
|
| 258 |
+
First, clone and install the specialized branch:
|
| 259 |
+
|
| 260 |
+
```bash
|
| 261 |
+
git clone https://github.com/sgl-project/sglang.git
|
| 262 |
+
cd sglang
|
| 263 |
+
pip install -e "python[all]"
|
| 264 |
+
```
|
| 265 |
+
|
| 266 |
+
Launch the server with DCA support:
|
| 267 |
+
|
| 268 |
+
```bash
|
| 269 |
+
python3 -m sglang.launch_server \
|
| 270 |
+
--model-path ./Qwen3-30B-A3B-Instruct-2507 \
|
| 271 |
+
--context-length 1010000 \
|
| 272 |
+
--mem-frac 0.75 \
|
| 273 |
+
--attention-backend dual_chunk_flash_attn \
|
| 274 |
+
--tp 4 \
|
| 275 |
+
--chunked-prefill-size 131072
|
| 276 |
+
```
|
| 277 |
+
|
| 278 |
+
##### Key Parameters
|
| 279 |
+
|
| 280 |
+
| Parameter | Purpose |
|
| 281 |
+
|---------|--------|
|
| 282 |
+
| `--attention-backend dual_chunk_flash_attn` | Activates Dual Chunk Flash Attention |
|
| 283 |
+
| `--context-length 1010000` | Defines max input length |
|
| 284 |
+
| `--mem-frac 0.75` | The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors. |
|
| 285 |
+
| `--tp 4` | Tensor parallelism size (matches model sharding) |
|
| 286 |
+
| `--chunked-prefill-size 131072` | Prefill chunk size for handling long inputs without OOM |
|
| 287 |
+
|
| 288 |
+
#### Troubleshooting:
|
| 289 |
+
|
| 290 |
+
1. Encountering the error: "The model's max sequence length (xxxxx) is larger than the maximum number of tokens that can be stored in the KV cache." or "RuntimeError: Not enough memory. Please try to increase --mem-fraction-static."
|
| 291 |
+
|
| 292 |
+
The VRAM reserved for the KV cache is insufficient.
|
| 293 |
+
- vLLM: Consider reducing the ``max_model_len`` or increasing the ``tensor_parallel_size`` and ``gpu_memory_utilization``. Alternatively, you can reduce ``max_num_batched_tokens``, although this may significantly slow down inference.
|
| 294 |
+
- SGLang: Consider reducing the ``context-length`` or increasing the ``tp`` and ``mem-frac``. Alternatively, you can reduce ``chunked-prefill-size``, although this may significantly slow down inference.
|
| 295 |
+
|
| 296 |
+
2. Encountering the error: "torch.OutOfMemoryError: CUDA out of memory."
|
| 297 |
+
|
| 298 |
+
The VRAM reserved for activation weights is insufficient. You can try lowering ``gpu_memory_utilization`` or ``mem-frac``, but be aware that this might reduce the VRAM available for the KV cache.
|
| 299 |
+
|
| 300 |
+
3. Encountering the error: "Input prompt (xxxxx tokens) + lookahead slots (0) is too long and exceeds the capacity of the block manager." or "The input (xxx xtokens) is longer than the model's context length (xxx tokens)."
|
| 301 |
+
|
| 302 |
+
The input is too lengthy. Consider using a shorter sequence or increasing the ``max_model_len`` or ``context-length``.
|
| 303 |
+
|
| 304 |
+
#### Long-Context Performance
|
| 305 |
+
|
| 306 |
+
We test the model on an 1M version of the [RULER](https://arxiv.org/abs/2404.06654) benchmark.
|
| 307 |
+
|
| 308 |
+
| Model Name | Acc avg | 4k | 8k | 16k | 32k | 64k | 96k | 128k | 192k | 256k | 384k | 512k | 640k | 768k | 896k | 1000k |
|
| 309 |
+
|---------------------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
|
| 310 |
+
| Qwen3-30B-A3B (Non-Thinking) | 72.0 | 97.1 | 96.1 | 95.0 | 92.2 | 82.6 | 79.7 | 76.9 | 70.2 | 66.3 | 61.9 | 55.4 | 52.6 | 51.5 | 52.0 | 50.9 |
|
| 311 |
+
| Qwen3-30B-A3B-Instruct-2507 (Full Attention) | 86.8 | 98.0 | 96.7 | 96.9 | 97.2 | 93.4 | 91.0 | 89.1 | 89.8 | 82.5 | 83.6 | 78.4 | 79.7 | 77.6 | 75.7 | 72.8 |
|
| 312 |
+
| Qwen3-30B-A3B-Instruct-2507 (Sparse Attention) | 86.8 | 98.0 | 97.1 | 96.3 | 95.1 | 93.6 | 92.5 | 88.1 | 87.7 | 82.9 | 85.7 | 80.7 | 80.0 | 76.9 | 75.5 | 72.2 |
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
* All models are evaluated with Dual Chunk Attention enabled.
|
| 316 |
+
* Since the evaluation is time-consuming, we use 260 samples for each length (13 sub-tasks, 20 samples for each).
|
| 317 |
+
|
| 318 |
+
## Best Practices
|
| 319 |
+
|
| 320 |
+
To achieve optimal performance, we recommend the following settings:
|
| 321 |
+
|
| 322 |
+
1. **Sampling Parameters**:
|
| 323 |
+
- We suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
|
| 324 |
+
- For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
|
| 325 |
+
|
| 326 |
+
2. **Adequate Output Length**: We recommend using an output length of 16,384 tokens for most queries, which is adequate for instruct models.
|
| 327 |
+
|
| 328 |
+
3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
|
| 329 |
+
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
|
| 330 |
+
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
|
| 331 |
+
|
| 332 |
+
### Citation
|
| 333 |
+
|
| 334 |
+
If you find our work helpful, feel free to give us a cite.
|
| 335 |
+
|
| 336 |
+
```
|
| 337 |
+
@misc{qwen3technicalreport,
|
| 338 |
+
title={Qwen3 Technical Report},
|
| 339 |
+
author={Qwen Team},
|
| 340 |
+
year={2025},
|
| 341 |
+
eprint={2505.09388},
|
| 342 |
+
archivePrefix={arXiv},
|
| 343 |
+
primaryClass={cs.CL},
|
| 344 |
+
url={https://arxiv.org/abs/2505.09388},
|
| 345 |
+
}
|
| 346 |
+
```
|