--- base_model: - OnomaAIResearch/Illustrious-XL-v2.0 tags: - quantization quantized_by: btaskel pipeline_tag: text-to-image --- From civitai/fannon: https://huggingface.co/OnomaAIResearch/Illustrious-XL-v2.0 Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed. In some benchmarks, selecting a large-parameter high-quantization LLM tends to perform better than a small-parameter low-quantization LLM. 根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点 在某些基准测试中,选择大参数高量化模型往往比选择小参数低量化模型表现更好。 ---------- You have amazing hardware?! I'm using 16GB DDR RAM and an R5 5600 for interest-based quantization work, along with a 50Mbps bandwidth speed. It might not be able to quantize models with higher parameters. 您有惊人的硬件??! 我正在使用16G DDR内存和R5 5600进行基于兴趣的量化工作,以及50Mbps的带宽速度,可能会无法为更高参数的模型进行量化。