Add new SentenceTransformer model with an onnx backend
Browse filesHello!
*This pull request has been automatically generated from the [`push_to_hub`](https://sbert.net/docs/package_reference/sentence_transformer/SentenceTransformer.html#sentence_transformers.SentenceTransformer.push_to_hub) method from the Sentence Transformers library.*
## Full Model Architecture:
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: ORTModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Tip:
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
```python
from sentence_transformers import SentenceTransformer
# TODO: Fill in the PR number
pr_number = 2
model = SentenceTransformer(
"bkai-foundation-models/vietnamese-bi-encoder",
revision=f"refs/pr/{pr_number}",
backend="onnx",
)
# Verify that everything works as expected
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
```
- 1_Pooling/config.json +2 -1
- config.json +1 -2
- config_sentence_transformers.json +7 -4
- onnx/model.onnx +3 -0
- special_tokens_map.json +49 -7
- tokenizer_config.json +2 -1
|
@@ -5,5 +5,6 @@
|
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
-
"pooling_mode_lasttoken": false
|
|
|
|
| 9 |
}
|
|
|
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
}
|
|
@@ -1,5 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "output/train_bi-encoder-mnrl-vinai-phobert-base-v2-margin_3.0-2023-08-27_23-13-25/",
|
| 3 |
"architectures": [
|
| 4 |
"RobertaModel"
|
| 5 |
],
|
|
@@ -21,7 +20,7 @@
|
|
| 21 |
"position_embedding_type": "absolute",
|
| 22 |
"tokenizer_class": "PhobertTokenizer",
|
| 23 |
"torch_dtype": "float32",
|
| 24 |
-
"transformers_version": "4.
|
| 25 |
"type_vocab_size": 1,
|
| 26 |
"use_cache": true,
|
| 27 |
"vocab_size": 64001
|
|
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
"RobertaModel"
|
| 4 |
],
|
|
|
|
| 20 |
"position_embedding_type": "absolute",
|
| 21 |
"tokenizer_class": "PhobertTokenizer",
|
| 22 |
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.52.4",
|
| 24 |
"type_vocab_size": 1,
|
| 25 |
"use_cache": true,
|
| 26 |
"vocab_size": 64001
|
|
@@ -1,7 +1,10 @@
|
|
| 1 |
{
|
| 2 |
"__version__": {
|
| 3 |
-
"sentence_transformers": "
|
| 4 |
-
"transformers": "4.
|
| 5 |
-
"pytorch": "2.
|
| 6 |
-
}
|
|
|
|
|
|
|
|
|
|
| 7 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.52.4",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
}
|
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96d5be0d0fcbcc27e598d3242b002779df390b563bab968aafade1925fa167cc
|
| 3 |
+
size 537974349
|
|
@@ -1,9 +1,51 @@
|
|
| 1 |
{
|
| 2 |
-
"bos_token":
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
}
|
|
@@ -45,8 +45,9 @@
|
|
| 45 |
"clean_up_tokenization_spaces": true,
|
| 46 |
"cls_token": "<s>",
|
| 47 |
"eos_token": "</s>",
|
|
|
|
| 48 |
"mask_token": "<mask>",
|
| 49 |
-
"model_max_length":
|
| 50 |
"pad_token": "<pad>",
|
| 51 |
"sep_token": "</s>",
|
| 52 |
"tokenizer_class": "PhobertTokenizer",
|
|
|
|
| 45 |
"clean_up_tokenization_spaces": true,
|
| 46 |
"cls_token": "<s>",
|
| 47 |
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
"mask_token": "<mask>",
|
| 50 |
+
"model_max_length": 256,
|
| 51 |
"pad_token": "<pad>",
|
| 52 |
"sep_token": "</s>",
|
| 53 |
"tokenizer_class": "PhobertTokenizer",
|