Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,137 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc-by-nc-4.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-4.0
|
| 3 |
+
language:
|
| 4 |
+
- bo
|
| 5 |
+
base_model: google-t5/t5-small
|
| 6 |
+
tags:
|
| 7 |
+
- nlp
|
| 8 |
+
- transliteration
|
| 9 |
+
- tibetan
|
| 10 |
+
- buddhism
|
| 11 |
+
---
|
| 12 |
+
# Model Card for tibetan-phonetic-transliteration
|
| 13 |
+
|
| 14 |
+
This model is a text2text generation model for phonetic transliteration of Tibetan script.
|
| 15 |
+
|
| 16 |
+
## Model Details
|
| 17 |
+
|
| 18 |
+
### Model Description
|
| 19 |
+
|
| 20 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
- **Developed by:** billingsmoore
|
| 25 |
+
- **Model type:** text2text generation
|
| 26 |
+
- **Language(s) (NLP):** Tibetan
|
| 27 |
+
- **License:** [Attribution-NonCommercial 4.0 International ](Attribution-NonCommercial 4.0 International )
|
| 28 |
+
- **Finetuned from model:** ['google-t5/t5-small'](https://huggingface.co/google-t5/t5-small)
|
| 29 |
+
|
| 30 |
+
### Model Sources
|
| 31 |
+
|
| 32 |
+
- **Repository:** [https://github.com/billingsmoore/MLotsawa](https://github.com/billingsmoore/MLotsawa)
|
| 33 |
+
|
| 34 |
+
## Uses
|
| 35 |
+
|
| 36 |
+
The intended use of this model is to provide phonetic transliteration of Tibetan script, typically as part of a larger Tibetan translation ecosystem.
|
| 37 |
+
|
| 38 |
+
### Direct Use
|
| 39 |
+
|
| 40 |
+
To use the model for transliteration in a python script, you can use the transformers library like so:
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
from transformers import pipeline
|
| 44 |
+
|
| 45 |
+
transliterator = pipeline('translation',model='billingsmoore/tibetan-phonetic-transliteration')
|
| 46 |
+
|
| 47 |
+
transliterated_text = transliterator(<string of unicode Tibetan script>)
|
| 48 |
+
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
### Downstream Use
|
| 52 |
+
|
| 53 |
+
The model can be finetuned for a specific use case using the following code.
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
from datasets import load_dataset
|
| 57 |
+
from transformers import AutoTokenizer, DataCollatorForSeq2Seq, AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer, Adafactor
|
| 58 |
+
from accelerate import Accelerator
|
| 59 |
+
|
| 60 |
+
dataset = load_dataset(<your dataset>)
|
| 61 |
+
dataset = dataset['train'].train_test_split(.1)
|
| 62 |
+
|
| 63 |
+
checkpoint = "billingsmoore/tibetan-phonetic-transliteration"
|
| 64 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 65 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="auto")
|
| 66 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
|
| 67 |
+
|
| 68 |
+
source_lang = 'bo'
|
| 69 |
+
target_lang = 'phon'
|
| 70 |
+
|
| 71 |
+
def preprocess_function(examples):
|
| 72 |
+
|
| 73 |
+
inputs = [example for example in examples[source_lang]]
|
| 74 |
+
targets = [example for example in examples[target_lang]]
|
| 75 |
+
|
| 76 |
+
model_inputs = tokenizer(inputs, text_target=targets, max_length=256, truncation=True, padding="max_length")
|
| 77 |
+
|
| 78 |
+
return model_inputs
|
| 79 |
+
|
| 80 |
+
tokenized_dataset = dataset.map(preprocess_function, batched=True)
|
| 81 |
+
|
| 82 |
+
optimizer = Adafactor(
|
| 83 |
+
model.parameters(),
|
| 84 |
+
scale_parameter=True,
|
| 85 |
+
relative_step=False,
|
| 86 |
+
warmup_init=False,
|
| 87 |
+
lr=3e-4
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
accelerator = Accelerator()
|
| 91 |
+
model, optimizer = accelerator.prepare(model, optimizer)
|
| 92 |
+
|
| 93 |
+
training_args = Seq2SeqTrainingArguments(
|
| 94 |
+
output_dir=".",
|
| 95 |
+
auto_find_batch_size=True,
|
| 96 |
+
predict_with_generate=True,
|
| 97 |
+
fp16=False,
|
| 98 |
+
push_to_hub=False,
|
| 99 |
+
eval_strategy='epoch',
|
| 100 |
+
save_strategy='epoch',
|
| 101 |
+
load_best_model_at_end=True,
|
| 102 |
+
num_train_epochs=5
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
trainer = Seq2SeqTrainer(
|
| 106 |
+
model=model,
|
| 107 |
+
args=training_args,
|
| 108 |
+
train_dataset=tokenized_dataset['train'],
|
| 109 |
+
eval_dataset=tokenized_dataset['test'],
|
| 110 |
+
tokenizer=tokenizer,
|
| 111 |
+
optimizers=(optimizer, None),
|
| 112 |
+
data_collator=data_collator
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
trainer.train()
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
## Bias, Risks, and Limitations
|
| 119 |
+
|
| 120 |
+
This model was trained exclusively on material from the Tibetan Buddhist canon and thus on Literary Tibetan.
|
| 121 |
+
It may not perform satisfactorily on texts from other corpi or on other dialects of Tibetan.
|
| 122 |
+
|
| 123 |
+
### Recommendations
|
| 124 |
+
|
| 125 |
+
For users who wish to use the model for other texts, I recommend further finetuning on your own dataset using the instructions above.
|
| 126 |
+
|
| 127 |
+
## Training Details
|
| 128 |
+
|
| 129 |
+
This model was trained on 98597 pairs of text, the first member of which is a line of unicode Tibetan text, the second (the target) is a the phonetic transliteration of the first.
|
| 130 |
+
This dataset was scraped from Lotsawa House and is released on Kaggle under the same license as the texts from which it is sourced.
|
| 131 |
+
[You can find this dataset and more information by clicking here.](https://www.kaggle.com/datasets/billingsmoore/tibetan-phonetic-transliteration-pairs)
|
| 132 |
+
|
| 133 |
+
This model was trained for five epochs. Further information regarding training can be found in the documentation of the [MLotsawa repository](https://github.com/billingsmoore/MLotsawa).
|
| 134 |
+
|
| 135 |
+
## Model Card Contact
|
| 136 |
+
|
| 137 |
+
billingsmoore [at] gmail [dot] com
|