File size: 11,763 Bytes
4761a96 e175925 4761a96 e175925 aa4849a 4761a96 e175925 4761a96 190c461 4761a96 190c461 4761a96 190c461 4761a96 190c461 4761a96 190c461 4761a96 190c461 4761a96 190c461 4761a96 e175925 4761a96 e175925 4761a96 e175925 4761a96 190c461 4761a96 e175925 190c461 e175925 190c461 4761a96 190c461 e175925 4761a96 e175925 190c461 4761a96 190c461 4761a96 e175925 4761a96 e175925 4761a96 e175925 4761a96 e175925 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
---
license: mit
library_name: transformers
pipeline_tag: text-generation
language:
- en
tags:
- gpt2
- historical
- london
- slm
- small-language-model
- text-generation
- history
- english
- safetensors
---
# London Historical LLM β Small Language Model (SLM)
A compact GPT-2 Small model (~117M params) **trained from scratch** on historical London texts (1500β1850). Fast to run on CPU, and supports NVIDIA (CUDA) and AMD (ROCm) GPUs.
> **Note**: This model was **trained from scratch** - not fine-tuned from existing models.
> This page includes simple **virtual-env setup**, **install choices for CPU/CUDA/ROCm**, and an **auto-device inference** example so anyone can get going quickly.
---
## π Model Description
This is a **Small Language Model (SLM)** version of the London Historical LLM, **trained from scratch** using GPT-2 Small architecture on historical London texts with a custom historical tokenizer. The model was built from the ground up, not fine-tuned from existing models.
### Key Features
- ~117M parameters (vs ~354M in the full model)
- Custom historical tokenizer (β30k vocab)
- London-specific context awareness and historical language patterns (e.g., *thou, thee, hath*)
- Lower memory footprint and faster inference on commodity hardware
- **Trained from scratch** - not fine-tuned from existing models
---
## π§ͺ Intended Use & Limitations
**Use cases:** historical-style narrative generation, prompt-based exploration of London themes (1500β1850), creative writing aids.
**Limitations:** may produce anachronisms or historically inaccurate statements; smaller models have less complex reasoning than larger LLMs. Validate outputs before downstream use.
---
## π Set up a virtual environment (Linux/macOS/Windows)
> Virtual environments isolate project dependencies. Official Python docs: `venv`.
**Check Python & pip**
```bash
# Linux/macOS
python3 --version && python3 -m pip --version
```
```powershell
# Windows (PowerShell)
python --version; python -m pip --version
```
**Create the env**
```bash
# Linux/macOS
python3 -m venv helloLondon
```
```powershell
# Windows (PowerShell)
python -m venv helloLondon
```
```cmd
:: Windows (Command Prompt)
python -m venv helloLondon
```
> **Note**: You can name your virtual environment anything you like, e.g., `.venv`, `my_env`, `london_env`.
**Activate**
```bash
# Linux/macOS
source helloLondon/bin/activate
```
```powershell
# Windows (PowerShell)
.\helloLondon\Scripts\Activate.ps1
```
```cmd
:: Windows (CMD)
.\helloLondon\Scripts\activate.bat
```
> If PowerShell blocks activation (*"running scripts is disabled"*), set the policy then retry activation:
```powershell
Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy RemoteSigned
# or just for this session:
Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass
```
---
## π¦ Install libraries
Upgrade basics, then install Hugging Face libs:
```bash
python -m pip install -U pip setuptools wheel
python -m pip install "transformers" "accelerate" "safetensors"
```
---
## Install **one** PyTorch variant (CPU / NVIDIA / AMD)
Use **one** of the commands below. For the most accurate command per OS/accelerator and version, prefer PyTorch's **Get Started** selector.
### A) CPU-only (Linux/Windows/macOS)
```bash
pip install torch --index-url https://download.pytorch.org/whl/cpu
```
### B) NVIDIA GPU (CUDA)
Pick the CUDA series that matches your system (examples below):
```bash
# CUDA 12.6
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
# CUDA 12.4
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
# CUDA 11.8
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
```
### C) AMD GPU (ROCm, **Linux-only**)
Install the ROCm build matching your ROCm runtime (examples):
```bash
# ROCm 6.3
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.3
# ROCm 6.2 (incl. 6.2.x)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4
# ROCm 6.1
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.1
```
**Quick sanity check**
```bash
python - <<'PY'
import torch
print("torch:", torch.__version__)
print("GPU available:", torch.cuda.is_available())
if torch.cuda.is_available():
print("device:", torch.cuda.get_device_name(0))
PY
```
---
## π Inference (auto-detect device)
This snippet picks the best device (CUDA/ROCm if available, else CPU) and uses sensible generation defaults for this SLM.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "bahree/london-historical-slm"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
prompt = "In the year 1834, I walked through the streets of London and witnessed"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(
inputs["input_ids"],
max_new_tokens=50,
do_sample=True,
temperature=0.8,
top_p=0.95,
top_k=40,
repetition_penalty=1.2,
no_repeat_ngram_size=3,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
early_stopping=True,
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## π§ͺ **Testing Your Model**
### **Quick Testing (10 Automated Prompts)**
```bash
# Test with 10 automated historical prompts
python 06_inference/test_published_models.py --model_type slm
```
**Expected Output:**
```
π§ͺ Testing SLM Model: bahree/london-historical-slm
============================================================
π Loading model...
β
Model loaded in 8.91 seconds
π Model Info:
Type: SLM
Description: Small Language Model (117M parameters)
Device: cuda
Vocabulary size: 30,000
Max length: 512
π― Testing generation with 10 prompts...
[10 automated tests with historical text generation]
```
### **Interactive Testing**
```bash
# Interactive mode for custom prompts
python 06_inference/inference_unified.py --published --model_type slm --interactive
# Single prompt test
python 06_inference/inference_unified.py --published --model_type slm --prompt "In the year 1834, I walked through the streets of London and witnessed"
```
**Need more headroom later?** Load with π€ Accelerate and `device_map="auto"` to spread layers across available devices/CPU automatically.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
```
---
## πͺ Windows Terminal one-liners
**PowerShell**
```powershell
python -c "from transformers import AutoTokenizer,AutoModelForCausalLM; m='bahree/london-historical-slm'; t=AutoTokenizer.from_pretrained(m); model=AutoModelForCausalLM.from_pretrained(m); p='In the year 1834, I walked through the streets of London and witnessed'; i=t(p,return_tensors='pt'); print(t.decode(model.generate(i['input_ids'],max_new_tokens=50,do_sample=True)[0],skip_special_tokens=True))"
```
**Command Prompt (CMD)**
```cmd
python -c "from transformers import AutoTokenizer, AutoModelForCausalLM ^&^& import torch ^&^& m='bahree/london-historical-slm' ^&^& t=AutoTokenizer.from_pretrained(m) ^&^& model=AutoModelForCausalLM.from_pretrained(m) ^&^& p='In the year 1834, I walked through the streets of London and witnessed' ^&^& i=t(p, return_tensors='pt') ^&^& print(t.decode(model.generate(i['input_ids'], max_new_tokens=50, do_sample=True)[0], skip_special_tokens=True))"
```
---
## π‘ Basic Usage (Python)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("bahree/london-historical-slm")
model = AutoModelForCausalLM.from_pretrained("bahree/london-historical-slm")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
prompt = "In the year 1834, I walked through the streets of London and witnessed"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
inputs["input_ids"],
max_new_tokens=50,
do_sample=True,
temperature=0.8,
top_p=0.95,
top_k=40,
repetition_penalty=1.2,
no_repeat_ngram_size=3,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
early_stopping=True,
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
---
## π§° Example Prompts
* **Tudor (1558):** "On this day in 1558, Queen Mary has died and β¦"
* **Stuart (1666):** "The Great Fire of London has consumed much of the city, and β¦"
* **Georgian/Victorian:** "As I journeyed through the streets of London, I observed β¦"
* **London specifics:** "Parliament sat in Westminster Hall β¦", "The Thames flowed dark and mysterious β¦"
---
## π οΈ Training Details
* **Architecture:** GPT-2 Small (12 layers, hidden size 768)
* **Params:** ~117M
* **Tokenizer:** custom historical tokenizer (~30k vocab) with London-specific and historical tokens
* **Data:** historical London corpus (1500β1850)
* **Steps/Epochs:** 30,000 steps (extended training for better convergence)
* **Batch/LR:** 32, 3e-4 (optimized for segmented data)
* **Hardware:** 2Γ GPU training with Distributed Data Parallel
* **Final Training Loss:** 1.395 (43% improvement from 20K steps)
* **Model Flops Utilization:** 3.5% (excellent efficiency)
* **Training Method:** **Trained from scratch** - not fine-tuned
* **Context Length:** 256 tokens (optimized for historical text segments)
* **Status:** β
**Successfully published and tested** - ready for production use
---
## π€ Historical Tokenizer
* Compact 30k vocab targeting 1500β1850 English
* Tokens for **year/date/name/place/title**, plus **thames**, **westminster**, etc.; includes **thou/thee/hath/doth** style markers
---
## β οΈ Troubleshooting
* **`ImportError: AutoModelForCausalLM requires the PyTorch library`**
β Install PyTorch with the correct accelerator variant (see CPU/CUDA/ROCm above or use the official selector).
* **AMD GPU not used**
β Ensure you installed a ROCm build and you're on Linux (`pip install ... --index-url https://download.pytorch.org/whl/rocmX.Y`). Verify with `torch.cuda.is_available()` and check the device name. ROCm wheels are Linux-only.
* **Running out of VRAM**
β Try smaller batch/sequence lengths, or load with `device_map="auto"` via π€ Accelerate to offload layers to CPU/disk.
---
## π Citation
If you use this model, please cite:
```bibtex
@misc{london-historical-slm,
title = {London Historical LLM - Small Language Model: A Compact GPT-2 for Historical Text Generation},
author = {Amit Bahree},
year = {2025},
url = {https://huggingface.co/bahree/london-historical-slm}
}
```
---
## Repository
The complete source code, training scripts, and documentation for this model are available on GitHub:
**π [https://github.com/bahree/helloLondon](https://github.com/bahree/helloLondon)**
This repository includes:
- Complete data collection pipeline for 1500-1850 historical English
- Custom tokenizer optimized for historical text
- Training infrastructure with GPU optimization
- Evaluation and deployment tools
- Comprehensive documentation and examples
### Quick Start with Repository
```bash
git clone https://github.com/bahree/helloLondon.git
cd helloLondon
python 06_inference/test_published_models.py --model_type slm
```
---
## π§Ύ License
MIT (see [LICENSE](https://github.com/bahree/helloLondon/blob/main/LICENSE) in repo).
|