ayushexel commited on
Commit
a71a5ce
·
verified ·
1 Parent(s): f8b8357

Add new CrossEncoder model

Browse files
README.md ADDED
@@ -0,0 +1,440 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1893949
8
+ - loss:Contrastive
9
+ base_model: nreimers/MiniLM-L6-H384-uncased
10
+ widget:
11
+ - source_sentence: what medicine can i give my dog for kennel cough?
12
+ sentences:
13
+ - Your veterinarian can prescribe a round of antibiotics to help your dog recover
14
+ faster. Some of the most widely prescribed medications for Kennel Cough are Baytril,
15
+ Doxycycline, and Clavamox. However, because the disease is caused by both a virus
16
+ and bacteria, the dog will require a dual-purpose treatment.
17
+ - Preventing Kennel Cough The kennel cough vaccination is given once a year, but
18
+ should not be given at the same time as their annual booster. If you're going
19
+ on holiday, it's important that your dog is vaccinated against kennel cough. Often
20
+ kennels will not accept your dog if it has not had a kennel cough vaccination.
21
+ - The Driver Guide A driver guide will act as your driver and tour guide in one
22
+ person. He is less knowledgeable than the tour guide, but can provide you with
23
+ the most important information, help you to get around at the destination and
24
+ give tips about the best photo spots.
25
+ - source_sentence: how to redirect http traffic to https in tomcat?
26
+ sentences:
27
+ - Yes, but it depends on the previous contents of the bag. FoodSaver® Bags that
28
+ previously contained fruits, vegetables, breads and dry goods can be washed and
29
+ reused. ... FoodSaver® Bags that contained greasy or oily foods should also be
30
+ discarded, as they may be difficult to clean. FoodSaver® Bags can be washed by
31
+ hand.
32
+ - '[''Go to SymantecDLP\\Protect\\tomcat\\conf directory.'', ''Edit the file server.xml.'',
33
+ ''Add the following above the first <connector> entry: ... '', ''Save the server.
34
+ ... '', ''Edit the web.xml file in the same directory.'', ''Scroll to the bottom
35
+ of the file and add the following just above the </web-app> entry: ... '', ''Save
36
+ the web.xml file.'']'
37
+ - 'Cause: The Enforce Console''s tomcat webserver is configured to only accept HTTPS
38
+ requests. Any non-secure HTTP request will not be redirected. By default the tomcat
39
+ webserver is not configured to redirect HTTP requests to HTTPS.'
40
+ - source_sentence: when did the last rick and morty air?
41
+ sentences:
42
+ - Instead of Naota, the main character of the original FLCL (pronounced “Fooly Cooly”),
43
+ Progressive focuses on Hidomi, a reserved girl who closes herself off from the
44
+ world by wearing headphones (that aren't actually playing music).
45
+ - On May 10, 2018, Adult Swim announced a long-term deal with the creators, ordering
46
+ 70 new episodes of Rick and Morty over an unknown number of seasons. As of May
47
+ 31, 2020, 41 episodes of Rick and Morty have aired, concluding the fourth season.
48
+ - What time is Rick and Morty season 4 episode 8 out? The latest episode of Rick
49
+ and Morty airs on Sunday, May 17 on Adult Swim. US fans can stream the new episode
50
+ of Rick and Morty when it airs on the channel.
51
+ - source_sentence: are clothes made of plastic?
52
+ sentences:
53
+ - It might surprise you, but you're probably wearing plastic clothes. ... Many of
54
+ our clothes contain plastics like polyester, nylon, acrylic and polyamide. In
55
+ fact most new fabrics are made of plastic – up to 64% of them. The thing is, every
56
+ time we wash these materials they shed millions of plastic microfibres.
57
+ - General Pharmacology. Beta-blockers are drugs that bind to beta-adrenoceptors
58
+ and thereby block the binding of norepinephrine and epinephrine to these receptors.
59
+ ... Second generation beta-blockers are more cardioselective in that they are
60
+ relatively selective for β1 adrenoceptors.
61
+ - It might surprise you, but you're probably wearing plastic clothes. ... Many of
62
+ our clothes contain plastics like polyester, nylon, acrylic and polyamide. In
63
+ fact most new fabrics are made of plastic – up to 64% of them. The thing is, every
64
+ time we wash these materials they shed millions of plastic microfibres.
65
+ - source_sentence: are emg pickups any good?
66
+ sentences:
67
+ - EMGs are a one trick pony, and only sound good for high gain applications. Sort
68
+ of, they definitely aren't as flexible as most passive options, but most metal
69
+ oriented passive pickups have the same issue. A lot of guitarists forget that
70
+ EMG makes more pickups than just the 81/85 set.
71
+ - Among guitar and bass accessories, the company sells active humbucker pickups,
72
+ such as the EMG 81, the EMG 85, the EMG 60, and the EMG 89. They also produce
73
+ passive pickups such as the EMG-HZ Series, which include SRO-OC1's and SC Sets.
74
+ - You can find the star next to the abandoned mansion. The Treasure Map Loading
75
+ Screen is unlocked through the battle pass, and if you look at the treasure map
76
+ loading screen you'll see a knife pointing in this location.
77
+ pipeline_tag: sentence-similarity
78
+ library_name: sentence-transformers
79
+ ---
80
+
81
+ # ColBERT based on nreimers/MiniLM-L6-H384-uncased
82
+
83
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased). It maps sentences & paragraphs to a 128-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
84
+
85
+ ## Model Details
86
+
87
+ ### Model Description
88
+ - **Model Type:** Sentence Transformer
89
+ - **Base model:** [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) <!-- at revision 3276f0fac9d818781d7a1327b3ff818fc4e643c0 -->
90
+ - **Maximum Sequence Length:** 31 tokens
91
+ - **Output Dimensionality:** 128 dimensions
92
+ - **Similarity Function:** Cosine Similarity
93
+ <!-- - **Training Dataset:** Unknown -->
94
+ <!-- - **Language:** Unknown -->
95
+ <!-- - **License:** Unknown -->
96
+
97
+ ### Model Sources
98
+
99
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
100
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
101
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
102
+
103
+ ### Full Model Architecture
104
+
105
+ ```
106
+ ColBERT(
107
+ (0): Transformer({'max_seq_length': 31, 'do_lower_case': False}) with Transformer model: BertModel
108
+ (1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
109
+ )
110
+ ```
111
+
112
+ ## Usage
113
+
114
+ ### Direct Usage (Sentence Transformers)
115
+
116
+ First install the Sentence Transformers library:
117
+
118
+ ```bash
119
+ pip install -U sentence-transformers
120
+ ```
121
+
122
+ Then you can load this model and run inference.
123
+ ```python
124
+ from sentence_transformers import SentenceTransformer
125
+
126
+ # Download from the 🤗 Hub
127
+ model = SentenceTransformer("sentence_transformers_model_id")
128
+ # Run inference
129
+ sentences = [
130
+ 'are emg pickups any good?',
131
+ "EMGs are a one trick pony, and only sound good for high gain applications. Sort of, they definitely aren't as flexible as most passive options, but most metal oriented passive pickups have the same issue. A lot of guitarists forget that EMG makes more pickups than just the 81/85 set.",
132
+ "Among guitar and bass accessories, the company sells active humbucker pickups, such as the EMG 81, the EMG 85, the EMG 60, and the EMG 89. They also produce passive pickups such as the EMG-HZ Series, which include SRO-OC1's and SC Sets.",
133
+ ]
134
+ embeddings = model.encode(sentences)
135
+ print(embeddings.shape)
136
+ # [3, 128]
137
+
138
+ # Get the similarity scores for the embeddings
139
+ similarities = model.similarity(embeddings, embeddings)
140
+ print(similarities.shape)
141
+ # [3, 3]
142
+ ```
143
+
144
+ <!--
145
+ ### Direct Usage (Transformers)
146
+
147
+ <details><summary>Click to see the direct usage in Transformers</summary>
148
+
149
+ </details>
150
+ -->
151
+
152
+ <!--
153
+ ### Downstream Usage (Sentence Transformers)
154
+
155
+ You can finetune this model on your own dataset.
156
+
157
+ <details><summary>Click to expand</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Out-of-Scope Use
164
+
165
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
166
+ -->
167
+
168
+ <!--
169
+ ## Bias, Risks and Limitations
170
+
171
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
172
+ -->
173
+
174
+ <!--
175
+ ### Recommendations
176
+
177
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
178
+ -->
179
+
180
+ ## Training Details
181
+
182
+ ### Training Dataset
183
+
184
+ #### Unnamed Dataset
185
+
186
+ * Size: 1,893,949 training samples
187
+ * Columns: <code>question</code>, <code>answer</code>, and <code>negative</code>
188
+ * Approximate statistics based on the first 1000 samples:
189
+ | | question | answer | negative |
190
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
191
+ | type | string | string | string |
192
+ | details | <ul><li>min: 9 tokens</li><li>mean: 13.01 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 31.78 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 31.66 tokens</li><li>max: 32 tokens</li></ul> |
193
+ * Samples:
194
+ | question | answer | negative |
195
+ |:-------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
196
+ | <code>what is the relationship between humility and thankfulness?</code> | <code>how gratitude can influence humility and vice versa. Humility is characterized by low self-focus, secure sense of self, and increased valuation of others. Gratitude is marked by a sense that one has benefited from the actions of another.</code> | <code>-hum-, root. -hum- comes from Latin, where it has the meaning "ground. '' This meaning is found in such words as: exhume, humble, humiliate, humility, humus, posthumous.</code> |
197
+ | <code>what is the difference between usb a b c?</code> | <code>The USB-A has a much larger physical connector than the Type C, Type C is around the same size as a micro-USB connector. Unlike, Type A, you won't need to try and insert it, flip it over and then flip it over once more just to find the right orientation when trying to make a connection.</code> | <code>First the transfer rates: USB 2.0 offers transfer rates of 480 Mbps and USB 3.0 offers transfer rates of 4.8 Gbps - that's 10 times faster. ... USB 2.0 provided up to 500 mA whereas USB 3.0 provides up to 900 mA, allowing power hungry devices to now be bus powered.</code> |
198
+ | <code>how hyaluronic acid is made?</code> | <code>Hyaluronic acid is a substance that is naturally present in the human body. It is found in the highest concentrations in fluids in the eyes and joints. The hyaluronic acid that is used as medicine is extracted from rooster combs or made by bacteria in the laboratory.</code> | <code>Hyaluronic acid helps your skin hang on to the moisture. 2. ... Hyaluronic acid by itself is non-comedogenic (doesn't clog pores), but you should be careful when choosing a hyaluronic acid serum that the ingredient list doesn't contain any sneaky pore-clogging ingredients you're not expecting.</code> |
199
+ * Loss: <code>pylate.losses.contrastive.Contrastive</code>
200
+
201
+ ### Evaluation Dataset
202
+
203
+ #### Unnamed Dataset
204
+
205
+ * Size: 5,000 evaluation samples
206
+ * Columns: <code>question</code>, <code>answer</code>, and <code>negative_1</code>
207
+ * Approximate statistics based on the first 1000 samples:
208
+ | | question | answer | negative_1 |
209
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
210
+ | type | string | string | string |
211
+ | details | <ul><li>min: 9 tokens</li><li>mean: 12.96 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 31.7 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 31.43 tokens</li><li>max: 32 tokens</li></ul> |
212
+ * Samples:
213
+ | question | answer | negative_1 |
214
+ |:----------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
215
+ | <code>are tefal ingenio pans suitable for induction hobs?</code> | <code>Tefal Ingenio is a revolutionary concept that brings a whole new take on versatility. ... The frying pans also feature Tefal's iconic Thermo-Spot which lets you know when the pan has reached optimal cooking temperature. The Ingenio Induction range is compatible with all hobs and is also dishwasher safe.</code> | <code>Tefal Ingenio is a revolutionary concept that brings a whole new take on versatility. ... The frying pans also feature Tefal's iconic Thermo-Spot which lets you know when the pan has reached optimal cooking temperature. The Ingenio Induction range is compatible with all hobs and is also dishwasher safe.</code> |
216
+ | <code>how many continuing education hours is acls?</code> | <code>The ACLS, PALS, and NRP certification courses are approved for 8 CEUs/CMEs, and recertification courses are approved for 4 CEUs/CMEs. The BLS certification course is approved for 4 CEUs/CMEs and the recertification course is approved for 2 CEUs/CMEs. For more information, please visit our Accreditation page.</code> | <code>The foremost difference between the two is their advancement level. Essentially, ACLS is a sophisticated and more advanced course and builds upon the major fundamentals developed during BLS. The main purpose of BLS and ACLS certification are well explained in this article.</code> |
217
+ | <code>what are the health benefits of drinking peppermint tea?</code> | <code>['Makes you Stress Free. When it comes to relieving stress and anxiety, peppermint tea is one of the best allies. ... ', 'Sleep-Friendly. ... ', 'Aids in Weight Loss. ... ', 'Cure for an Upset Stomach. ... ', 'Improves Digestion. ... ', 'Boosts Immune System. ... ', 'Fights Bad Breath.']</code> | <code>Peppermint tea is a popular herbal tea that is naturally calorie- and caffeine-free. Some research has suggested that the oils in peppermint may have a number of other health benefits, such as fresher breath, better digestion, and reduced pain from headaches. Peppermint tea also has antibacterial properties.</code> |
218
+ * Loss: <code>pylate.losses.contrastive.Contrastive</code>
219
+
220
+ ### Training Hyperparameters
221
+ #### Non-Default Hyperparameters
222
+
223
+ - `eval_strategy`: steps
224
+ - `per_device_train_batch_size`: 256
225
+ - `per_device_eval_batch_size`: 256
226
+ - `learning_rate`: 3e-06
227
+ - `num_train_epochs`: 1
228
+ - `warmup_ratio`: 0.1
229
+ - `seed`: 12
230
+ - `bf16`: True
231
+ - `dataloader_num_workers`: 12
232
+ - `load_best_model_at_end`: True
233
+
234
+ #### All Hyperparameters
235
+ <details><summary>Click to expand</summary>
236
+
237
+ - `overwrite_output_dir`: False
238
+ - `do_predict`: False
239
+ - `eval_strategy`: steps
240
+ - `prediction_loss_only`: True
241
+ - `per_device_train_batch_size`: 256
242
+ - `per_device_eval_batch_size`: 256
243
+ - `per_gpu_train_batch_size`: None
244
+ - `per_gpu_eval_batch_size`: None
245
+ - `gradient_accumulation_steps`: 1
246
+ - `eval_accumulation_steps`: None
247
+ - `torch_empty_cache_steps`: None
248
+ - `learning_rate`: 3e-06
249
+ - `weight_decay`: 0.0
250
+ - `adam_beta1`: 0.9
251
+ - `adam_beta2`: 0.999
252
+ - `adam_epsilon`: 1e-08
253
+ - `max_grad_norm`: 1.0
254
+ - `num_train_epochs`: 1
255
+ - `max_steps`: -1
256
+ - `lr_scheduler_type`: linear
257
+ - `lr_scheduler_kwargs`: {}
258
+ - `warmup_ratio`: 0.1
259
+ - `warmup_steps`: 0
260
+ - `log_level`: passive
261
+ - `log_level_replica`: warning
262
+ - `log_on_each_node`: True
263
+ - `logging_nan_inf_filter`: True
264
+ - `save_safetensors`: True
265
+ - `save_on_each_node`: False
266
+ - `save_only_model`: False
267
+ - `restore_callback_states_from_checkpoint`: False
268
+ - `no_cuda`: False
269
+ - `use_cpu`: False
270
+ - `use_mps_device`: False
271
+ - `seed`: 12
272
+ - `data_seed`: None
273
+ - `jit_mode_eval`: False
274
+ - `use_ipex`: False
275
+ - `bf16`: True
276
+ - `fp16`: False
277
+ - `fp16_opt_level`: O1
278
+ - `half_precision_backend`: auto
279
+ - `bf16_full_eval`: False
280
+ - `fp16_full_eval`: False
281
+ - `tf32`: None
282
+ - `local_rank`: 0
283
+ - `ddp_backend`: None
284
+ - `tpu_num_cores`: None
285
+ - `tpu_metrics_debug`: False
286
+ - `debug`: []
287
+ - `dataloader_drop_last`: False
288
+ - `dataloader_num_workers`: 12
289
+ - `dataloader_prefetch_factor`: None
290
+ - `past_index`: -1
291
+ - `disable_tqdm`: False
292
+ - `remove_unused_columns`: True
293
+ - `label_names`: None
294
+ - `load_best_model_at_end`: True
295
+ - `ignore_data_skip`: False
296
+ - `fsdp`: []
297
+ - `fsdp_min_num_params`: 0
298
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
299
+ - `tp_size`: 0
300
+ - `fsdp_transformer_layer_cls_to_wrap`: None
301
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
302
+ - `deepspeed`: None
303
+ - `label_smoothing_factor`: 0.0
304
+ - `optim`: adamw_torch
305
+ - `optim_args`: None
306
+ - `adafactor`: False
307
+ - `group_by_length`: False
308
+ - `length_column_name`: length
309
+ - `ddp_find_unused_parameters`: None
310
+ - `ddp_bucket_cap_mb`: None
311
+ - `ddp_broadcast_buffers`: False
312
+ - `dataloader_pin_memory`: True
313
+ - `dataloader_persistent_workers`: False
314
+ - `skip_memory_metrics`: True
315
+ - `use_legacy_prediction_loop`: False
316
+ - `push_to_hub`: False
317
+ - `resume_from_checkpoint`: None
318
+ - `hub_model_id`: None
319
+ - `hub_strategy`: every_save
320
+ - `hub_private_repo`: None
321
+ - `hub_always_push`: False
322
+ - `gradient_checkpointing`: False
323
+ - `gradient_checkpointing_kwargs`: None
324
+ - `include_inputs_for_metrics`: False
325
+ - `include_for_metrics`: []
326
+ - `eval_do_concat_batches`: True
327
+ - `fp16_backend`: auto
328
+ - `push_to_hub_model_id`: None
329
+ - `push_to_hub_organization`: None
330
+ - `mp_parameters`:
331
+ - `auto_find_batch_size`: False
332
+ - `full_determinism`: False
333
+ - `torchdynamo`: None
334
+ - `ray_scope`: last
335
+ - `ddp_timeout`: 1800
336
+ - `torch_compile`: False
337
+ - `torch_compile_backend`: None
338
+ - `torch_compile_mode`: None
339
+ - `dispatch_batches`: None
340
+ - `split_batches`: None
341
+ - `include_tokens_per_second`: False
342
+ - `include_num_input_tokens_seen`: False
343
+ - `neftune_noise_alpha`: None
344
+ - `optim_target_modules`: None
345
+ - `batch_eval_metrics`: False
346
+ - `eval_on_start`: False
347
+ - `use_liger_kernel`: False
348
+ - `eval_use_gather_object`: False
349
+ - `average_tokens_across_devices`: False
350
+ - `prompts`: None
351
+ - `batch_sampler`: batch_sampler
352
+ - `multi_dataset_batch_sampler`: proportional
353
+
354
+ </details>
355
+
356
+ ### Training Logs
357
+ | Epoch | Step | Training Loss |
358
+ |:------:|:----:|:-------------:|
359
+ | 0.0001 | 1 | 10.8061 |
360
+ | 0.0270 | 200 | 8.9391 |
361
+ | 0.0541 | 400 | 5.1795 |
362
+ | 0.0811 | 600 | 2.3951 |
363
+ | 0.1081 | 800 | 1.6927 |
364
+ | 0.1352 | 1000 | 1.404 |
365
+ | 0.1622 | 1200 | 1.2496 |
366
+ | 0.1892 | 1400 | 1.1613 |
367
+ | 0.2162 | 1600 | 1.0843 |
368
+ | 0.2433 | 1800 | 1.0427 |
369
+ | 0.2703 | 2000 | 1.0005 |
370
+ | 0.2973 | 2200 | 0.9695 |
371
+ | 0.3244 | 2400 | 0.9325 |
372
+ | 0.3514 | 2600 | 0.9122 |
373
+ | 0.3784 | 2800 | 0.8832 |
374
+ | 0.4055 | 3000 | 0.8689 |
375
+ | 0.4325 | 3200 | 0.8626 |
376
+ | 0.4595 | 3400 | 0.8452 |
377
+ | 0.4866 | 3600 | 0.8329 |
378
+ | 0.5136 | 3800 | 0.8132 |
379
+ | 0.5406 | 4000 | 0.8111 |
380
+ | 0.5676 | 4200 | 0.7952 |
381
+ | 0.5947 | 4400 | 0.7892 |
382
+ | 0.6217 | 4600 | 0.7772 |
383
+ | 0.6487 | 4800 | 0.7793 |
384
+ | 0.6758 | 5000 | 0.7705 |
385
+ | 0.7028 | 5200 | 0.7692 |
386
+ | 0.7298 | 5400 | 0.7625 |
387
+ | 0.7569 | 5600 | 0.7595 |
388
+ | 0.7839 | 5800 | 0.7405 |
389
+ | 0.8109 | 6000 | 0.7513 |
390
+ | 0.8380 | 6200 | 0.7396 |
391
+ | 0.8650 | 6400 | 0.7312 |
392
+ | 0.8920 | 6600 | 0.7325 |
393
+ | 0.9190 | 6800 | 0.7371 |
394
+ | 0.9461 | 7000 | 0.7422 |
395
+ | 0.9731 | 7200 | 0.7296 |
396
+
397
+
398
+ ### Framework Versions
399
+ - Python: 3.11.0
400
+ - Sentence Transformers: 4.0.1
401
+ - Transformers: 4.50.3
402
+ - PyTorch: 2.6.0+cu124
403
+ - Accelerate: 1.5.2
404
+ - Datasets: 3.5.0
405
+ - Tokenizers: 0.21.1
406
+
407
+ ## Citation
408
+
409
+ ### BibTeX
410
+
411
+ #### Sentence Transformers
412
+ ```bibtex
413
+ @inproceedings{reimers-2019-sentence-bert,
414
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
415
+ author = "Reimers, Nils and Gurevych, Iryna",
416
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
417
+ month = "11",
418
+ year = "2019",
419
+ publisher = "Association for Computational Linguistics",
420
+ url = "https://arxiv.org/abs/1908.10084",
421
+ }
422
+ ```
423
+
424
+ <!--
425
+ ## Glossary
426
+
427
+ *Clearly define terms in order to be accessible across audiences.*
428
+ -->
429
+
430
+ <!--
431
+ ## Model Card Authors
432
+
433
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
434
+ -->
435
+
436
+ <!--
437
+ ## Model Card Contact
438
+
439
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
440
+ -->
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "[D] ": 30523,
3
+ "[Q] ": 30522
4
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 6,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "sentence_transformers": {
27
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
28
+ "version": "4.0.1"
29
+ },
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.50.3",
32
+ "type_vocab_size": 2,
33
+ "use_cache": true,
34
+ "vocab_size": 30524
35
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e076b5a120ce558175a297483da67ad6c397aa29f4c867b8fa3a901eecd3b88d
3
+ size 90869484
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[MASK]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30522": {
44
+ "content": "[Q] ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "30523": {
52
+ "content": "[D] ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ }
59
+ },
60
+ "clean_up_tokenization_spaces": true,
61
+ "cls_token": "[CLS]",
62
+ "do_basic_tokenize": true,
63
+ "do_lower_case": true,
64
+ "extra_special_tokens": {},
65
+ "mask_token": "[MASK]",
66
+ "max_length": 31,
67
+ "model_max_length": 512,
68
+ "never_split": null,
69
+ "pad_to_multiple_of": null,
70
+ "pad_token": "[MASK]",
71
+ "pad_token_type_id": 0,
72
+ "padding_side": "right",
73
+ "sep_token": "[SEP]",
74
+ "stride": 0,
75
+ "strip_accents": null,
76
+ "tokenize_chinese_chars": true,
77
+ "tokenizer_class": "BertTokenizer",
78
+ "truncation_side": "right",
79
+ "truncation_strategy": "longest_first",
80
+ "unk_token": "[UNK]"
81
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff