Update README.md
Browse files
README.md
CHANGED
|
@@ -1,201 +1,83 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
-
|
| 34 |
-
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
|
| 201 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: facebook/wav2vec2-large-xlsr-53
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
metrics:
|
| 7 |
+
- wer
|
| 8 |
+
model-index:
|
| 9 |
+
- name: pidgin-wav2vec2-xlsr53
|
| 10 |
+
results: []
|
| 11 |
---
|
| 12 |
|
| 13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 14 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 15 |
+
|
| 16 |
+
# pidgin-wav2vec2-xlsr53
|
| 17 |
+
|
| 18 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the Nigerian Pidgin dataset.
|
| 19 |
+
It achieves the following results on the evaluation set:
|
| 20 |
+
- Loss: 0.6907
|
| 21 |
+
- Wer: 0.3161 (val)
|
| 22 |
+
|
| 23 |
+
## Model description
|
| 24 |
+
|
| 25 |
+
*to be updated*
|
| 26 |
+
|
| 27 |
+
## Intended uses & limitations
|
| 28 |
+
|
| 29 |
+
*to be updated*
|
| 30 |
+
|
| 31 |
+
## Training and evaluation data
|
| 32 |
+
|
| 33 |
+
*to be updated*
|
| 34 |
+
|
| 35 |
+
## Training procedure
|
| 36 |
+
|
| 37 |
+
### Training hyperparameters
|
| 38 |
+
|
| 39 |
+
The following hyperparameters were used during training:
|
| 40 |
+
- learning_rate: 0.0001
|
| 41 |
+
- train_batch_size: 4
|
| 42 |
+
- eval_batch_size: 4
|
| 43 |
+
- seed: 3407
|
| 44 |
+
- gradient_accumulation_steps: 2
|
| 45 |
+
- total_train_batch_size: 8
|
| 46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 47 |
+
- lr_scheduler_type: linear
|
| 48 |
+
- lr_scheduler_warmup_steps: 1000
|
| 49 |
+
- num_epochs: 30
|
| 50 |
+
- mixed_precision_training: Native AMP
|
| 51 |
+
|
| 52 |
+
### Training results
|
| 53 |
+
|
| 54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
| 55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
| 56 |
+
| 6.604 | 1.48 | 500 | 3.0540 | 1.0 |
|
| 57 |
+
| 3.0176 | 2.95 | 1000 | 3.0035 | 1.0 |
|
| 58 |
+
| 2.1071 | 4.43 | 1500 | 1.0811 | 0.6289 |
|
| 59 |
+
| 1.1143 | 5.91 | 2000 | 0.8348 | 0.5017 |
|
| 60 |
+
| 0.8501 | 7.39 | 2500 | 0.7707 | 0.4352 |
|
| 61 |
+
| 0.7272 | 8.86 | 3000 | 0.7410 | 0.4075 |
|
| 62 |
+
| 0.6038 | 10.34 | 3500 | 0.6283 | 0.3850 |
|
| 63 |
+
| 0.5334 | 11.82 | 4000 | 0.6356 | 0.3701 |
|
| 64 |
+
| 0.4645 | 13.29 | 4500 | 0.6243 | 0.3657 |
|
| 65 |
+
| 0.4251 | 14.77 | 5000 | 0.6838 | 0.3492 |
|
| 66 |
+
| 0.3801 | 16.25 | 5500 | 0.6619 | 0.3445 |
|
| 67 |
+
| 0.3636 | 17.73 | 6000 | 0.6945 | 0.3360 |
|
| 68 |
+
| 0.3366 | 19.2 | 6500 | 0.6108 | 0.3340 |
|
| 69 |
+
| 0.3146 | 20.68 | 7000 | 0.6511 | 0.3273 |
|
| 70 |
+
| 0.3003 | 22.16 | 7500 | 0.6815 | 0.3253 |
|
| 71 |
+
| 0.2783 | 23.63 | 8000 | 0.6761 | 0.3215 |
|
| 72 |
+
| 0.2601 | 25.11 | 8500 | 0.6762 | 0.3187 |
|
| 73 |
+
| 0.2528 | 26.59 | 9000 | 0.6687 | 0.3194 |
|
| 74 |
+
| 0.2409 | 28.06 | 9500 | 0.7064 | 0.3163 |
|
| 75 |
+
| 0.2359 | 29.54 | 10000 | 0.6907 | 0.3161 |
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
### Framework versions
|
| 79 |
+
|
| 80 |
+
- Transformers 4.37.2
|
| 81 |
+
- Pytorch 2.0.1+cu117
|
| 82 |
+
- Datasets 2.12.0
|
| 83 |
+
- Tokenizers 0.15.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|