msandroid commited on
Commit
5bf7664
·
1 Parent(s): dc1f273

Add parakeet-tdt-0.6b-v3-coreml model files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Decoder.mlmodelc/analytics/coremldata.bin +3 -0
  2. Decoder.mlmodelc/coremldata.bin +3 -0
  3. Decoder.mlmodelc/metadata.json +123 -0
  4. Decoder.mlmodelc/model.mil +73 -0
  5. Decoder.mlmodelc/weights/weight.bin +3 -0
  6. Encoder.mlmodelc/analytics/coremldata.bin +3 -0
  7. Encoder.mlmodelc/coremldata.bin +3 -0
  8. Encoder.mlmodelc/metadata.json +106 -0
  9. Encoder.mlmodelc/model.mil +0 -0
  10. Encoder.mlmodelc/weights/weight.bin +3 -0
  11. JointDecision.mlmodelc/analytics/coremldata.bin +3 -0
  12. JointDecision.mlmodelc/coremldata.bin +3 -0
  13. JointDecision.mlmodelc/metadata.json +103 -0
  14. JointDecision.mlmodelc/model.mil +58 -0
  15. JointDecision.mlmodelc/weights/weight.bin +3 -0
  16. MelEncoder.mlmodelc/analytics/coremldata.bin +3 -0
  17. MelEncoder.mlmodelc/coremldata.bin +3 -0
  18. MelEncoder.mlmodelc/metadata.json +116 -0
  19. MelEncoder.mlmodelc/model.mil +0 -0
  20. MelEncoder.mlmodelc/weights/weight.bin +3 -0
  21. Melspectrogram_15s.mlmodelc/analytics/coremldata.bin +3 -0
  22. Melspectrogram_15s.mlmodelc/coremldata.bin +3 -0
  23. Melspectrogram_15s.mlmodelc/metadata.json +107 -0
  24. Melspectrogram_15s.mlmodelc/model.mil +171 -0
  25. Melspectrogram_15s.mlmodelc/weights/weight.bin +3 -0
  26. ParakeetDecoder.mlmodelc/analytics/coremldata.bin +3 -0
  27. ParakeetDecoder.mlmodelc/coremldata.bin +3 -0
  28. ParakeetDecoder.mlmodelc/model.mil +72 -0
  29. ParakeetDecoder.mlmodelc/weights/weight.bin +3 -0
  30. ParakeetEncoder_15s.mlmodelc/analytics/coremldata.bin +3 -0
  31. ParakeetEncoder_15s.mlmodelc/coremldata.bin +3 -0
  32. ParakeetEncoder_15s.mlmodelc/metadata.json +103 -0
  33. ParakeetEncoder_15s.mlmodelc/model.mil +0 -0
  34. ParakeetEncoder_15s.mlmodelc/weights/weight.bin +3 -0
  35. Preprocessor.mlmodelc/analytics/coremldata.bin +3 -0
  36. Preprocessor.mlmodelc/coremldata.bin +3 -0
  37. Preprocessor.mlmodelc/metadata.json +105 -0
  38. Preprocessor.mlmodelc/model.mil +125 -0
  39. Preprocessor.mlmodelc/weights/weight.bin +3 -0
  40. README.md +146 -3
  41. RNNTJoint.mlmodelc/analytics/coremldata.bin +3 -0
  42. RNNTJoint.mlmodelc/coremldata.bin +3 -0
  43. RNNTJoint.mlmodelc/metadata.json +100 -0
  44. RNNTJoint.mlmodelc/model.mil +31 -0
  45. RNNTJoint.mlmodelc/weights/weight.bin +3 -0
  46. config.json +1 -0
  47. mlpackages/.DS_Store +0 -0
  48. mlpackages/Decoder.mlpackage/Data/com.apple.CoreML/model.mlmodel +3 -0
  49. mlpackages/Decoder.mlpackage/Data/com.apple.CoreML/weights/weight.bin +3 -0
  50. mlpackages/Decoder.mlpackage/Manifest.json +18 -0
Decoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4238c4e81ecd0dc94bd7dfbb60f7e2cc824107c1ffe0387b8607b72833dba350
3
+ size 243
Decoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18647af085d87bd8f3121c8a9b4d4564c1ede038dab63d295b4e745cf2d7fb99
3
+ size 554
Decoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "shortDescription" : "Parakeet decoder (RNNT prediction network)",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float32",
10
+ "formattedType" : "MultiArray (Float32 1 × 640 × 1)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 640, 1]",
13
+ "name" : "decoder",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float32",
20
+ "formattedType" : "MultiArray (Float32 2 × 1 × 640)",
21
+ "shortDescription" : "",
22
+ "shape" : "[2, 1, 640]",
23
+ "name" : "h_out",
24
+ "type" : "MultiArray"
25
+ },
26
+ {
27
+ "hasShapeFlexibility" : "0",
28
+ "isOptional" : "0",
29
+ "dataType" : "Float32",
30
+ "formattedType" : "MultiArray (Float32 2 × 1 × 640)",
31
+ "shortDescription" : "",
32
+ "shape" : "[2, 1, 640]",
33
+ "name" : "c_out",
34
+ "type" : "MultiArray"
35
+ }
36
+ ],
37
+ "storagePrecision" : "Float16",
38
+ "modelParameters" : [
39
+
40
+ ],
41
+ "author" : "Fluid Inference",
42
+ "specificationVersion" : 8,
43
+ "mlProgramOperationTypeHistogram" : {
44
+ "Select" : 1,
45
+ "Ios17.squeeze" : 4,
46
+ "Ios17.gather" : 1,
47
+ "Ios17.cast" : 8,
48
+ "Ios17.lstm" : 2,
49
+ "Split" : 2,
50
+ "Ios17.add" : 1,
51
+ "Ios17.transpose" : 2,
52
+ "Ios17.greaterEqual" : 1,
53
+ "Identity" : 1,
54
+ "Stack" : 2
55
+ },
56
+ "computePrecision" : "Mixed (Float16, Float32, Int16, Int32)",
57
+ "isUpdatable" : "0",
58
+ "stateSchema" : [
59
+
60
+ ],
61
+ "availability" : {
62
+ "macOS" : "14.0",
63
+ "tvOS" : "17.0",
64
+ "visionOS" : "1.0",
65
+ "watchOS" : "10.0",
66
+ "iOS" : "17.0",
67
+ "macCatalyst" : "17.0"
68
+ },
69
+ "modelType" : {
70
+ "name" : "MLModelType_mlProgram"
71
+ },
72
+ "inputSchema" : [
73
+ {
74
+ "hasShapeFlexibility" : "0",
75
+ "isOptional" : "0",
76
+ "dataType" : "Int32",
77
+ "formattedType" : "MultiArray (Int32 1 × 1)",
78
+ "shortDescription" : "",
79
+ "shape" : "[1, 1]",
80
+ "name" : "targets",
81
+ "type" : "MultiArray"
82
+ },
83
+ {
84
+ "hasShapeFlexibility" : "0",
85
+ "isOptional" : "0",
86
+ "dataType" : "Int32",
87
+ "formattedType" : "MultiArray (Int32 1)",
88
+ "shortDescription" : "",
89
+ "shape" : "[1]",
90
+ "name" : "target_length",
91
+ "type" : "MultiArray"
92
+ },
93
+ {
94
+ "hasShapeFlexibility" : "0",
95
+ "isOptional" : "0",
96
+ "dataType" : "Float32",
97
+ "formattedType" : "MultiArray (Float32 2 × 1 × 640)",
98
+ "shortDescription" : "",
99
+ "shape" : "[2, 1, 640]",
100
+ "name" : "h_in",
101
+ "type" : "MultiArray"
102
+ },
103
+ {
104
+ "hasShapeFlexibility" : "0",
105
+ "isOptional" : "0",
106
+ "dataType" : "Float32",
107
+ "formattedType" : "MultiArray (Float32 2 × 1 × 640)",
108
+ "shortDescription" : "",
109
+ "shape" : "[2, 1, 640]",
110
+ "name" : "c_in",
111
+ "type" : "MultiArray"
112
+ }
113
+ ],
114
+ "userDefinedMetadata" : {
115
+ "com.github.apple.coremltools.conversion_date" : "2025-09-19",
116
+ "com.github.apple.coremltools.source" : "torch==2.7.0",
117
+ "com.github.apple.coremltools.version" : "9.0b1",
118
+ "com.github.apple.coremltools.source_dialect" : "TorchScript"
119
+ },
120
+ "generatedClassName" : "parakeet_decoder",
121
+ "method" : "predict"
122
+ }
123
+ ]
Decoder.mlmodelc/model.mil ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
3
+ {
4
+ func main<ios17>(tensor<fp32, [2, 1, 640]> c_in, tensor<fp32, [2, 1, 640]> h_in, tensor<int32, [1]> target_length, tensor<int32, [1, 1]> targets) {
5
+ tensor<int32, []> y_batch_dims_0 = const()[name = tensor<string, []>("y_batch_dims_0"), val = tensor<int32, []>(0)];
6
+ tensor<bool, []> y_validate_indices_0 = const()[name = tensor<string, []>("y_validate_indices_0"), val = tensor<bool, []>(false)];
7
+ tensor<fp16, [8193, 640]> module_prediction_embed_weight_to_fp16 = const()[name = tensor<string, []>("module_prediction_embed_weight_to_fp16"), val = tensor<fp16, [8193, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
8
+ tensor<string, []> targets_to_int16_dtype_0 = const()[name = tensor<string, []>("targets_to_int16_dtype_0"), val = tensor<string, []>("int16")];
9
+ tensor<string, []> cast_1_dtype_0 = const()[name = tensor<string, []>("cast_1_dtype_0"), val = tensor<string, []>("int32")];
10
+ tensor<int32, []> greater_equal_0_y_0 = const()[name = tensor<string, []>("greater_equal_0_y_0"), val = tensor<int32, []>(0)];
11
+ tensor<int16, [1, 1]> targets_to_int16 = cast(dtype = targets_to_int16_dtype_0, x = targets)[name = tensor<string, []>("cast_9")];
12
+ tensor<int32, [1, 1]> cast_1 = cast(dtype = cast_1_dtype_0, x = targets_to_int16)[name = tensor<string, []>("cast_8")];
13
+ tensor<bool, [1, 1]> greater_equal_0 = greater_equal(x = cast_1, y = greater_equal_0_y_0)[name = tensor<string, []>("greater_equal_0")];
14
+ tensor<int32, []> slice_by_index_0 = const()[name = tensor<string, []>("slice_by_index_0"), val = tensor<int32, []>(8193)];
15
+ tensor<int32, [1, 1]> add_2 = add(x = cast_1, y = slice_by_index_0)[name = tensor<string, []>("add_2")];
16
+ tensor<int32, [1, 1]> select_0 = select(a = cast_1, b = add_2, cond = greater_equal_0)[name = tensor<string, []>("select_0")];
17
+ tensor<int32, []> y_cast_fp16_cast_uint16_axis_0 = const()[name = tensor<string, []>("y_cast_fp16_cast_uint16_axis_0"), val = tensor<int32, []>(0)];
18
+ tensor<string, []> select_0_to_int16_dtype_0 = const()[name = tensor<string, []>("select_0_to_int16_dtype_0"), val = tensor<string, []>("int16")];
19
+ tensor<int16, [1, 1]> select_0_to_int16 = cast(dtype = select_0_to_int16_dtype_0, x = select_0)[name = tensor<string, []>("cast_7")];
20
+ tensor<fp16, [1, 1, 640]> y_cast_fp16_cast_uint16_cast_uint16 = gather(axis = y_cast_fp16_cast_uint16_axis_0, batch_dims = y_batch_dims_0, indices = select_0_to_int16, validate_indices = y_validate_indices_0, x = module_prediction_embed_weight_to_fp16)[name = tensor<string, []>("y_cast_fp16_cast_uint16_cast_uint16")];
21
+ tensor<int32, [3]> input_3_perm_0 = const()[name = tensor<string, []>("input_3_perm_0"), val = tensor<int32, [3]>([1, 0, 2])];
22
+ tensor<int32, []> split_0_num_splits_0 = const()[name = tensor<string, []>("split_0_num_splits_0"), val = tensor<int32, []>(2)];
23
+ tensor<int32, []> split_0_axis_0 = const()[name = tensor<string, []>("split_0_axis_0"), val = tensor<int32, []>(0)];
24
+ tensor<string, []> h_in_to_fp16_dtype_0 = const()[name = tensor<string, []>("h_in_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
25
+ tensor<fp16, [2, 1, 640]> h_in_to_fp16 = cast(dtype = h_in_to_fp16_dtype_0, x = h_in)[name = tensor<string, []>("cast_6")];
26
+ tensor<fp16, [1, 1, 640]> split_0_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_0_cast_fp16_1 = split(axis = split_0_axis_0, num_splits = split_0_num_splits_0, x = h_in_to_fp16)[name = tensor<string, []>("split_0_cast_fp16")];
27
+ tensor<int32, []> split_1_num_splits_0 = const()[name = tensor<string, []>("split_1_num_splits_0"), val = tensor<int32, []>(2)];
28
+ tensor<int32, []> split_1_axis_0 = const()[name = tensor<string, []>("split_1_axis_0"), val = tensor<int32, []>(0)];
29
+ tensor<string, []> c_in_to_fp16_dtype_0 = const()[name = tensor<string, []>("c_in_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
30
+ tensor<fp16, [2, 1, 640]> c_in_to_fp16 = cast(dtype = c_in_to_fp16_dtype_0, x = c_in)[name = tensor<string, []>("cast_5")];
31
+ tensor<fp16, [1, 1, 640]> split_1_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_1_cast_fp16_1 = split(axis = split_1_axis_0, num_splits = split_1_num_splits_0, x = c_in_to_fp16)[name = tensor<string, []>("split_1_cast_fp16")];
32
+ tensor<int32, [1]> input_lstm_layer_0_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_layer_0_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
33
+ tensor<fp16, [1, 640]> input_lstm_layer_0_lstm_h0_squeeze_cast_fp16 = squeeze(axes = input_lstm_layer_0_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_0)[name = tensor<string, []>("input_lstm_layer_0_lstm_h0_squeeze_cast_fp16")];
34
+ tensor<int32, [1]> input_lstm_layer_0_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_layer_0_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
35
+ tensor<fp16, [1, 640]> input_lstm_layer_0_lstm_c0_squeeze_cast_fp16 = squeeze(axes = input_lstm_layer_0_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_0)[name = tensor<string, []>("input_lstm_layer_0_lstm_c0_squeeze_cast_fp16")];
36
+ tensor<string, []> input_lstm_layer_0_direction_0 = const()[name = tensor<string, []>("input_lstm_layer_0_direction_0"), val = tensor<string, []>("forward")];
37
+ tensor<bool, []> input_lstm_layer_0_output_sequence_0 = const()[name = tensor<string, []>("input_lstm_layer_0_output_sequence_0"), val = tensor<bool, []>(true)];
38
+ tensor<string, []> input_lstm_layer_0_recurrent_activation_0 = const()[name = tensor<string, []>("input_lstm_layer_0_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
39
+ tensor<string, []> input_lstm_layer_0_cell_activation_0 = const()[name = tensor<string, []>("input_lstm_layer_0_cell_activation_0"), val = tensor<string, []>("tanh")];
40
+ tensor<string, []> input_lstm_layer_0_activation_0 = const()[name = tensor<string, []>("input_lstm_layer_0_activation_0"), val = tensor<string, []>("tanh")];
41
+ tensor<fp16, [2560, 640]> concat_1_to_fp16 = const()[name = tensor<string, []>("concat_1_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10487168)))];
42
+ tensor<fp16, [2560, 640]> concat_2_to_fp16 = const()[name = tensor<string, []>("concat_2_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13764032)))];
43
+ tensor<fp16, [2560]> concat_0_to_fp16 = const()[name = tensor<string, []>("concat_0_to_fp16"), val = tensor<fp16, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17040896)))];
44
+ tensor<fp16, [1, 1, 640]> input_3_cast_fp16 = transpose(perm = input_3_perm_0, x = y_cast_fp16_cast_uint16_cast_uint16)[name = tensor<string, []>("transpose_2")];
45
+ tensor<fp16, [1, 1, 640]> input_lstm_layer_0_cast_fp16_0, tensor<fp16, [1, 640]> input_lstm_layer_0_cast_fp16_1, tensor<fp16, [1, 640]> input_lstm_layer_0_cast_fp16_2 = lstm(activation = input_lstm_layer_0_activation_0, bias = concat_0_to_fp16, cell_activation = input_lstm_layer_0_cell_activation_0, direction = input_lstm_layer_0_direction_0, initial_c = input_lstm_layer_0_lstm_c0_squeeze_cast_fp16, initial_h = input_lstm_layer_0_lstm_h0_squeeze_cast_fp16, output_sequence = input_lstm_layer_0_output_sequence_0, recurrent_activation = input_lstm_layer_0_recurrent_activation_0, weight_hh = concat_2_to_fp16, weight_ih = concat_1_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("input_lstm_layer_0_cast_fp16")];
46
+ tensor<int32, [1]> input_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
47
+ tensor<fp16, [1, 640]> input_lstm_h0_squeeze_cast_fp16 = squeeze(axes = input_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_1)[name = tensor<string, []>("input_lstm_h0_squeeze_cast_fp16")];
48
+ tensor<int32, [1]> input_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
49
+ tensor<fp16, [1, 640]> input_lstm_c0_squeeze_cast_fp16 = squeeze(axes = input_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_1)[name = tensor<string, []>("input_lstm_c0_squeeze_cast_fp16")];
50
+ tensor<string, []> input_direction_0 = const()[name = tensor<string, []>("input_direction_0"), val = tensor<string, []>("forward")];
51
+ tensor<bool, []> input_output_sequence_0 = const()[name = tensor<string, []>("input_output_sequence_0"), val = tensor<bool, []>(true)];
52
+ tensor<string, []> input_recurrent_activation_0 = const()[name = tensor<string, []>("input_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
53
+ tensor<string, []> input_cell_activation_0 = const()[name = tensor<string, []>("input_cell_activation_0"), val = tensor<string, []>("tanh")];
54
+ tensor<string, []> input_activation_0 = const()[name = tensor<string, []>("input_activation_0"), val = tensor<string, []>("tanh")];
55
+ tensor<fp16, [2560, 640]> concat_4_to_fp16 = const()[name = tensor<string, []>("concat_4_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17046080)))];
56
+ tensor<fp16, [2560, 640]> concat_5_to_fp16 = const()[name = tensor<string, []>("concat_5_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(20322944)))];
57
+ tensor<fp16, [2560]> concat_3_to_fp16 = const()[name = tensor<string, []>("concat_3_to_fp16"), val = tensor<fp16, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23599808)))];
58
+ tensor<fp16, [1, 1, 640]> input_cast_fp16_0, tensor<fp16, [1, 640]> input_cast_fp16_1, tensor<fp16, [1, 640]> input_cast_fp16_2 = lstm(activation = input_activation_0, bias = concat_3_to_fp16, cell_activation = input_cell_activation_0, direction = input_direction_0, initial_c = input_lstm_c0_squeeze_cast_fp16, initial_h = input_lstm_h0_squeeze_cast_fp16, output_sequence = input_output_sequence_0, recurrent_activation = input_recurrent_activation_0, weight_hh = concat_5_to_fp16, weight_ih = concat_4_to_fp16, x = input_lstm_layer_0_cast_fp16_0)[name = tensor<string, []>("input_cast_fp16")];
59
+ tensor<int32, []> obj_3_axis_0 = const()[name = tensor<string, []>("obj_3_axis_0"), val = tensor<int32, []>(0)];
60
+ tensor<fp16, [2, 1, 640]> obj_3_cast_fp16 = stack(axis = obj_3_axis_0, values = (input_lstm_layer_0_cast_fp16_1, input_cast_fp16_1))[name = tensor<string, []>("obj_3_cast_fp16")];
61
+ tensor<string, []> obj_3_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("obj_3_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
62
+ tensor<int32, []> obj_axis_0 = const()[name = tensor<string, []>("obj_axis_0"), val = tensor<int32, []>(0)];
63
+ tensor<fp16, [2, 1, 640]> obj_cast_fp16 = stack(axis = obj_axis_0, values = (input_lstm_layer_0_cast_fp16_2, input_cast_fp16_2))[name = tensor<string, []>("obj_cast_fp16")];
64
+ tensor<string, []> obj_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("obj_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
65
+ tensor<int32, [3]> transpose_0_perm_0 = const()[name = tensor<string, []>("transpose_0_perm_0"), val = tensor<int32, [3]>([1, 2, 0])];
66
+ tensor<string, []> transpose_0_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("transpose_0_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
67
+ tensor<fp16, [1, 640, 1]> transpose_0_cast_fp16 = transpose(perm = transpose_0_perm_0, x = input_cast_fp16_0)[name = tensor<string, []>("transpose_1")];
68
+ tensor<fp32, [1, 640, 1]> decoder = cast(dtype = transpose_0_cast_fp16_to_fp32_dtype_0, x = transpose_0_cast_fp16)[name = tensor<string, []>("cast_2")];
69
+ tensor<fp32, [2, 1, 640]> c_out = cast(dtype = obj_cast_fp16_to_fp32_dtype_0, x = obj_cast_fp16)[name = tensor<string, []>("cast_3")];
70
+ tensor<fp32, [2, 1, 640]> h_out = cast(dtype = obj_3_cast_fp16_to_fp32_dtype_0, x = obj_3_cast_fp16)[name = tensor<string, []>("cast_4")];
71
+ tensor<int32, [1]> target_length_tmp = identity(x = target_length)[name = tensor<string, []>("target_length_tmp")];
72
+ } -> (decoder, h_out, c_out);
73
+ }
Decoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48adf0f0d47c406c8253d4f7fef967436a39da14f5a65e66d5a4b407be355d41
3
+ size 23604992
Encoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42e638870d73f26b332918a3496ce36793fbb413a81cbd3d16ba01328637a105
3
+ size 243
Encoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d48034a167a82e88fc3df64f60af963ab3983538271175b8319e7d5720a0fb86
3
+ size 485
Encoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "shortDescription" : "enc6bit-palettize quantized - encoder",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float32",
10
+ "formattedType" : "MultiArray (Float32 1 × 1024 × 188)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1024, 188]",
13
+ "name" : "encoder",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Int32",
20
+ "formattedType" : "MultiArray (Int32 1)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1]",
23
+ "name" : "encoder_length",
24
+ "type" : "MultiArray"
25
+ }
26
+ ],
27
+ "storagePrecision" : "Mixed (Float16, Palettized (6 bits))",
28
+ "modelParameters" : [
29
+
30
+ ],
31
+ "author" : "Fluid Inference",
32
+ "specificationVersion" : 8,
33
+ "mlProgramOperationTypeHistogram" : {
34
+ "Ios17.floor" : 3,
35
+ "Ios17.logicalAnd" : 2,
36
+ "Ios17.reshape" : 145,
37
+ "Ios16.softmax" : 24,
38
+ "Ios17.matmul" : 72,
39
+ "Ios17.transpose" : 172,
40
+ "Split" : 24,
41
+ "Ios17.expandDims" : 5,
42
+ "Select" : 72,
43
+ "Ios17.add" : 174,
44
+ "Tile" : 1,
45
+ "Ios17.sliceByIndex" : 48,
46
+ "Ios16.sigmoid" : 24,
47
+ "Pad" : 48,
48
+ "Ios17.logicalNot" : 2,
49
+ "Ios17.layerNorm" : 120,
50
+ "Ios16.silu" : 72,
51
+ "Ios17.less" : 1,
52
+ "Ios16.constexprLutToDense" : 294,
53
+ "Ios17.conv" : 77,
54
+ "Ios16.relu" : 3,
55
+ "Ios17.linear" : 193,
56
+ "Ios17.cast" : 4,
57
+ "Ios17.mul" : 99
58
+ },
59
+ "computePrecision" : "Mixed (Float16, Float32, Int32)",
60
+ "isUpdatable" : "0",
61
+ "stateSchema" : [
62
+
63
+ ],
64
+ "availability" : {
65
+ "macOS" : "14.0",
66
+ "tvOS" : "17.0",
67
+ "visionOS" : "1.0",
68
+ "watchOS" : "10.0",
69
+ "iOS" : "17.0",
70
+ "macCatalyst" : "17.0"
71
+ },
72
+ "modelType" : {
73
+ "name" : "MLModelType_mlProgram"
74
+ },
75
+ "inputSchema" : [
76
+ {
77
+ "hasShapeFlexibility" : "0",
78
+ "isOptional" : "0",
79
+ "dataType" : "Float32",
80
+ "formattedType" : "MultiArray (Float32 1 × 128 × 1501)",
81
+ "shortDescription" : "",
82
+ "shape" : "[1, 128, 1501]",
83
+ "name" : "mel",
84
+ "type" : "MultiArray"
85
+ },
86
+ {
87
+ "hasShapeFlexibility" : "0",
88
+ "isOptional" : "0",
89
+ "dataType" : "Int32",
90
+ "formattedType" : "MultiArray (Int32 1)",
91
+ "shortDescription" : "",
92
+ "shape" : "[1]",
93
+ "name" : "mel_length",
94
+ "type" : "MultiArray"
95
+ }
96
+ ],
97
+ "userDefinedMetadata" : {
98
+ "com.github.apple.coremltools.conversion_date" : "2025-09-25",
99
+ "com.github.apple.coremltools.source" : "torch==2.7.0",
100
+ "com.github.apple.coremltools.version" : "9.0b1",
101
+ "com.github.apple.coremltools.source_dialect" : "TorchScript"
102
+ },
103
+ "generatedClassName" : "Encoder6bit",
104
+ "method" : "predict"
105
+ }
106
+ ]
Encoder.mlmodelc/model.mil ADDED
The diff for this file is too large to render. See raw diff
 
Encoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2020f323703477a5b21d7c2d282c403e371afb5962e79877e3033e73ba6f421
3
+ size 445187200
JointDecision.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc69ef031ed427e888b1f3889d13eb373655edd5ac9927de20b5dae281b636b7
3
+ size 243
JointDecision.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f56ded0404498e666ffcd84dda0c393924fc3581345ad03e41429ff560cb97b6
3
+ size 534
JointDecision.mlmodelc/metadata.json ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "shortDescription" : "Parakeet single-step joint decision (current frame)",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Int32",
10
+ "formattedType" : "MultiArray (Int32 1 × 1 × 1)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1, 1]",
13
+ "name" : "token_id",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float32",
20
+ "formattedType" : "MultiArray (Float32 1 × 1 × 1)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1, 1, 1]",
23
+ "name" : "token_prob",
24
+ "type" : "MultiArray"
25
+ },
26
+ {
27
+ "hasShapeFlexibility" : "0",
28
+ "isOptional" : "0",
29
+ "dataType" : "Int32",
30
+ "formattedType" : "MultiArray (Int32 1 × 1 × 1)",
31
+ "shortDescription" : "",
32
+ "shape" : "[1, 1, 1]",
33
+ "name" : "duration",
34
+ "type" : "MultiArray"
35
+ }
36
+ ],
37
+ "storagePrecision" : "Float16",
38
+ "modelParameters" : [
39
+
40
+ ],
41
+ "author" : "Fluid Inference",
42
+ "specificationVersion" : 8,
43
+ "mlProgramOperationTypeHistogram" : {
44
+ "Ios17.reduceArgmax" : 2,
45
+ "Ios17.squeeze" : 1,
46
+ "Ios17.cast" : 4,
47
+ "Ios17.linear" : 3,
48
+ "Ios17.transpose" : 2,
49
+ "Ios17.sliceByIndex" : 2,
50
+ "Ios17.add" : 1,
51
+ "Ios16.relu" : 1,
52
+ "Ios16.softmax" : 1,
53
+ "Ios17.gatherAlongAxis" : 1,
54
+ "Ios17.expandDims" : 3
55
+ },
56
+ "computePrecision" : "Mixed (Float16, Float32, Int16, Int32)",
57
+ "isUpdatable" : "0",
58
+ "stateSchema" : [
59
+
60
+ ],
61
+ "availability" : {
62
+ "macOS" : "14.0",
63
+ "tvOS" : "17.0",
64
+ "visionOS" : "1.0",
65
+ "watchOS" : "10.0",
66
+ "iOS" : "17.0",
67
+ "macCatalyst" : "17.0"
68
+ },
69
+ "modelType" : {
70
+ "name" : "MLModelType_mlProgram"
71
+ },
72
+ "inputSchema" : [
73
+ {
74
+ "hasShapeFlexibility" : "0",
75
+ "isOptional" : "0",
76
+ "dataType" : "Float32",
77
+ "formattedType" : "MultiArray (Float32 1 × 1024 × 1)",
78
+ "shortDescription" : "",
79
+ "shape" : "[1, 1024, 1]",
80
+ "name" : "encoder_step",
81
+ "type" : "MultiArray"
82
+ },
83
+ {
84
+ "hasShapeFlexibility" : "0",
85
+ "isOptional" : "0",
86
+ "dataType" : "Float32",
87
+ "formattedType" : "MultiArray (Float32 1 × 640 × 1)",
88
+ "shortDescription" : "",
89
+ "shape" : "[1, 640, 1]",
90
+ "name" : "decoder_step",
91
+ "type" : "MultiArray"
92
+ }
93
+ ],
94
+ "userDefinedMetadata" : {
95
+ "com.github.apple.coremltools.conversion_date" : "2025-09-19",
96
+ "com.github.apple.coremltools.source" : "torch==2.7.0",
97
+ "com.github.apple.coremltools.version" : "9.0b1",
98
+ "com.github.apple.coremltools.source_dialect" : "TorchScript"
99
+ },
100
+ "generatedClassName" : "parakeet_joint_decision_single_step",
101
+ "method" : "predict"
102
+ }
103
+ ]
JointDecision.mlmodelc/model.mil ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
3
+ {
4
+ func main<ios17>(tensor<fp32, [1, 640, 1]> decoder_step, tensor<fp32, [1, 1024, 1]> encoder_step) {
5
+ tensor<int32, [3]> input_1_perm_0 = const()[name = tensor<string, []>("input_1_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
6
+ tensor<string, []> encoder_step_to_fp16_dtype_0 = const()[name = tensor<string, []>("encoder_step_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
7
+ tensor<int32, [3]> input_3_perm_0 = const()[name = tensor<string, []>("input_3_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
8
+ tensor<string, []> decoder_step_to_fp16_dtype_0 = const()[name = tensor<string, []>("decoder_step_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
9
+ tensor<fp16, [640, 1024]> joint_module_enc_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_enc_weight_to_fp16"), val = tensor<fp16, [640, 1024]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
10
+ tensor<fp16, [640]> joint_module_enc_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_enc_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1310848)))];
11
+ tensor<fp16, [1, 1024, 1]> encoder_step_to_fp16 = cast(dtype = encoder_step_to_fp16_dtype_0, x = encoder_step)[name = tensor<string, []>("cast_3")];
12
+ tensor<fp16, [1, 1, 1024]> input_1_cast_fp16 = transpose(perm = input_1_perm_0, x = encoder_step_to_fp16)[name = tensor<string, []>("transpose_1")];
13
+ tensor<fp16, [1, 1, 640]> linear_0_cast_fp16 = linear(bias = joint_module_enc_bias_to_fp16, weight = joint_module_enc_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
14
+ tensor<fp16, [640, 640]> joint_module_pred_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_pred_weight_to_fp16"), val = tensor<fp16, [640, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1312192)))];
15
+ tensor<fp16, [640]> joint_module_pred_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_pred_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2131456)))];
16
+ tensor<fp16, [1, 640, 1]> decoder_step_to_fp16 = cast(dtype = decoder_step_to_fp16_dtype_0, x = decoder_step)[name = tensor<string, []>("cast_2")];
17
+ tensor<fp16, [1, 1, 640]> input_3_cast_fp16 = transpose(perm = input_3_perm_0, x = decoder_step_to_fp16)[name = tensor<string, []>("transpose_0")];
18
+ tensor<fp16, [1, 1, 640]> linear_1_cast_fp16 = linear(bias = joint_module_pred_bias_to_fp16, weight = joint_module_pred_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("linear_1_cast_fp16")];
19
+ tensor<int32, [1]> var_23_axes_0 = const()[name = tensor<string, []>("op_23_axes_0"), val = tensor<int32, [1]>([2])];
20
+ tensor<fp16, [1, 1, 1, 640]> var_23_cast_fp16 = expand_dims(axes = var_23_axes_0, x = linear_0_cast_fp16)[name = tensor<string, []>("op_23_cast_fp16")];
21
+ tensor<int32, [1]> var_24_axes_0 = const()[name = tensor<string, []>("op_24_axes_0"), val = tensor<int32, [1]>([1])];
22
+ tensor<fp16, [1, 1, 1, 640]> var_24_cast_fp16 = expand_dims(axes = var_24_axes_0, x = linear_1_cast_fp16)[name = tensor<string, []>("op_24_cast_fp16")];
23
+ tensor<fp16, [1, 1, 1, 640]> input_5_cast_fp16 = add(x = var_23_cast_fp16, y = var_24_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
24
+ tensor<fp16, [1, 1, 1, 640]> input_7_cast_fp16 = relu(x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
25
+ tensor<fp16, [8198, 640]> joint_module_joint_net_2_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_joint_net_2_weight_to_fp16"), val = tensor<fp16, [8198, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2132800)))];
26
+ tensor<fp16, [8198]> joint_module_joint_net_2_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_joint_net_2_bias_to_fp16"), val = tensor<fp16, [8198]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12626304)))];
27
+ tensor<fp16, [1, 1, 1, 8198]> linear_2_cast_fp16 = linear(bias = joint_module_joint_net_2_bias_to_fp16, weight = joint_module_joint_net_2_weight_to_fp16, x = input_7_cast_fp16)[name = tensor<string, []>("linear_2_cast_fp16")];
28
+ tensor<int32, [4]> token_logits_begin_0 = const()[name = tensor<string, []>("token_logits_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
29
+ tensor<int32, [4]> token_logits_end_0 = const()[name = tensor<string, []>("token_logits_end_0"), val = tensor<int32, [4]>([1, 1, 1, 8193])];
30
+ tensor<bool, [4]> token_logits_end_mask_0 = const()[name = tensor<string, []>("token_logits_end_mask_0"), val = tensor<bool, [4]>([true, true, true, false])];
31
+ tensor<fp16, [1, 1, 1, 8193]> token_logits_cast_fp16 = slice_by_index(begin = token_logits_begin_0, end = token_logits_end_0, end_mask = token_logits_end_mask_0, x = linear_2_cast_fp16)[name = tensor<string, []>("token_logits_cast_fp16")];
32
+ tensor<int32, [4]> duration_logits_begin_0 = const()[name = tensor<string, []>("duration_logits_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 8193])];
33
+ tensor<int32, [4]> duration_logits_end_0 = const()[name = tensor<string, []>("duration_logits_end_0"), val = tensor<int32, [4]>([1, 1, 1, 8198])];
34
+ tensor<bool, [4]> duration_logits_end_mask_0 = const()[name = tensor<string, []>("duration_logits_end_mask_0"), val = tensor<bool, [4]>([true, true, true, true])];
35
+ tensor<fp16, [1, 1, 1, 5]> duration_logits_cast_fp16 = slice_by_index(begin = duration_logits_begin_0, end = duration_logits_end_0, end_mask = duration_logits_end_mask_0, x = linear_2_cast_fp16)[name = tensor<string, []>("duration_logits_cast_fp16")];
36
+ tensor<int32, []> var_43_axis_0 = const()[name = tensor<string, []>("op_43_axis_0"), val = tensor<int32, []>(-1)];
37
+ tensor<bool, []> var_43_keep_dims_0 = const()[name = tensor<string, []>("op_43_keep_dims_0"), val = tensor<bool, []>(false)];
38
+ tensor<string, []> var_43_output_dtype_0 = const()[name = tensor<string, []>("op_43_output_dtype_0"), val = tensor<string, []>("int32")];
39
+ tensor<int32, [1, 1, 1]> token_id = reduce_argmax(axis = var_43_axis_0, keep_dims = var_43_keep_dims_0, output_dtype = var_43_output_dtype_0, x = token_logits_cast_fp16)[name = tensor<string, []>("op_43_cast_fp16")];
40
+ tensor<int32, []> var_49 = const()[name = tensor<string, []>("op_49"), val = tensor<int32, []>(-1)];
41
+ tensor<fp16, [1, 1, 1, 8193]> token_probs_all_cast_fp16 = softmax(axis = var_49, x = token_logits_cast_fp16)[name = tensor<string, []>("token_probs_all_cast_fp16")];
42
+ tensor<int32, [1]> var_58_axes_0 = const()[name = tensor<string, []>("op_58_axes_0"), val = tensor<int32, [1]>([-1])];
43
+ tensor<int32, [1, 1, 1, 1]> var_58 = expand_dims(axes = var_58_axes_0, x = token_id)[name = tensor<string, []>("op_58")];
44
+ tensor<int32, []> var_59 = const()[name = tensor<string, []>("op_59"), val = tensor<int32, []>(-1)];
45
+ tensor<bool, []> var_61_validate_indices_0 = const()[name = tensor<string, []>("op_61_validate_indices_0"), val = tensor<bool, []>(false)];
46
+ tensor<string, []> var_58_to_int16_dtype_0 = const()[name = tensor<string, []>("op_58_to_int16_dtype_0"), val = tensor<string, []>("int16")];
47
+ tensor<int16, [1, 1, 1, 1]> var_58_to_int16 = cast(dtype = var_58_to_int16_dtype_0, x = var_58)[name = tensor<string, []>("cast_1")];
48
+ tensor<fp16, [1, 1, 1, 1]> var_61_cast_fp16_cast_int16 = gather_along_axis(axis = var_59, indices = var_58_to_int16, validate_indices = var_61_validate_indices_0, x = token_probs_all_cast_fp16)[name = tensor<string, []>("op_61_cast_fp16_cast_int16")];
49
+ tensor<int32, [1]> var_63_axes_0 = const()[name = tensor<string, []>("op_63_axes_0"), val = tensor<int32, [1]>([-1])];
50
+ tensor<fp16, [1, 1, 1]> var_63_cast_fp16 = squeeze(axes = var_63_axes_0, x = var_61_cast_fp16_cast_int16)[name = tensor<string, []>("op_63_cast_fp16")];
51
+ tensor<string, []> var_63_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_63_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
52
+ tensor<int32, []> var_66_axis_0 = const()[name = tensor<string, []>("op_66_axis_0"), val = tensor<int32, []>(-1)];
53
+ tensor<bool, []> var_66_keep_dims_0 = const()[name = tensor<string, []>("op_66_keep_dims_0"), val = tensor<bool, []>(false)];
54
+ tensor<string, []> var_66_output_dtype_0 = const()[name = tensor<string, []>("op_66_output_dtype_0"), val = tensor<string, []>("int32")];
55
+ tensor<int32, [1, 1, 1]> duration = reduce_argmax(axis = var_66_axis_0, keep_dims = var_66_keep_dims_0, output_dtype = var_66_output_dtype_0, x = duration_logits_cast_fp16)[name = tensor<string, []>("op_66_cast_fp16")];
56
+ tensor<fp32, [1, 1, 1]> token_prob = cast(dtype = var_63_cast_fp16_to_fp32_dtype_0, x = var_63_cast_fp16)[name = tensor<string, []>("cast_0")];
57
+ } -> (token_id, token_prob, duration);
58
+ }
JointDecision.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e0e63d840032f7f07ddb1d64446051166281e5491bf22da8a945c41f6eedb3e
3
+ size 12642764
MelEncoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:811601924d9f2206d3c712cd37668ee728c865c9aadbbbc63742e424e02664a7
3
+ size 243
MelEncoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10da3c056f8381d7447527718dc36e137439fffa4ce154f12b3656e8856bf96a
3
+ size 493
MelEncoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "shortDescription" : "int8-linear quantized - mel_encoder",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float32",
10
+ "formattedType" : "MultiArray (Float32 1 × 1024 × 188)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1024, 188]",
13
+ "name" : "encoder",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Int32",
20
+ "formattedType" : "MultiArray (Int32 1)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1]",
23
+ "name" : "encoder_length",
24
+ "type" : "MultiArray"
25
+ }
26
+ ],
27
+ "storagePrecision" : "Mixed (Float16, Int8)",
28
+ "modelParameters" : [
29
+
30
+ ],
31
+ "author" : "Fluid Inference",
32
+ "specificationVersion" : 8,
33
+ "mlProgramOperationTypeHistogram" : {
34
+ "Tile" : 2,
35
+ "Stack" : 1,
36
+ "Ios17.greaterEqual" : 1,
37
+ "Ios16.silu" : 72,
38
+ "Ios17.sub" : 4,
39
+ "Ios16.reduceSum" : 4,
40
+ "Pad" : 49,
41
+ "Ios17.logicalNot" : 2,
42
+ "Ios17.sliceByIndex" : 51,
43
+ "Ios16.constexprAffineDequantize" : 298,
44
+ "Ios17.concat" : 1,
45
+ "Ios17.pow" : 2,
46
+ "Ios17.sqrt" : 1,
47
+ "Ios17.floor" : 3,
48
+ "Ios17.floorDiv" : 1,
49
+ "Ios17.expandDims" : 13,
50
+ "Ios17.less" : 2,
51
+ "Ios17.mul" : 100,
52
+ "Ios17.transpose" : 172,
53
+ "Ios17.matmul" : 73,
54
+ "Ios16.sigmoid" : 24,
55
+ "Ios17.conv" : 79,
56
+ "Ios17.reshape" : 147,
57
+ "Split" : 24,
58
+ "Ios17.log" : 1,
59
+ "Ios17.cast" : 7,
60
+ "Ios17.linear" : 193,
61
+ "Ios17.realDiv" : 3,
62
+ "Select" : 75,
63
+ "Ios16.relu" : 3,
64
+ "Ios17.layerNorm" : 120,
65
+ "Ios16.softmax" : 24,
66
+ "Ios17.add" : 178,
67
+ "Ios17.logicalAnd" : 2
68
+ },
69
+ "computePrecision" : "Mixed (Float16, Float32, Int32)",
70
+ "isUpdatable" : "0",
71
+ "stateSchema" : [
72
+
73
+ ],
74
+ "availability" : {
75
+ "macOS" : "14.0",
76
+ "tvOS" : "17.0",
77
+ "visionOS" : "1.0",
78
+ "watchOS" : "10.0",
79
+ "iOS" : "17.0",
80
+ "macCatalyst" : "17.0"
81
+ },
82
+ "modelType" : {
83
+ "name" : "MLModelType_mlProgram"
84
+ },
85
+ "inputSchema" : [
86
+ {
87
+ "hasShapeFlexibility" : "0",
88
+ "isOptional" : "0",
89
+ "dataType" : "Float32",
90
+ "formattedType" : "MultiArray (Float32 1 × 240000)",
91
+ "shortDescription" : "",
92
+ "shape" : "[1, 240000]",
93
+ "name" : "audio_signal",
94
+ "type" : "MultiArray"
95
+ },
96
+ {
97
+ "hasShapeFlexibility" : "0",
98
+ "isOptional" : "0",
99
+ "dataType" : "Int32",
100
+ "formattedType" : "MultiArray (Int32 1)",
101
+ "shortDescription" : "",
102
+ "shape" : "[1]",
103
+ "name" : "audio_length",
104
+ "type" : "MultiArray"
105
+ }
106
+ ],
107
+ "userDefinedMetadata" : {
108
+ "com.github.apple.coremltools.conversion_date" : "2025-09-19",
109
+ "com.github.apple.coremltools.source" : "torch==2.7.0",
110
+ "com.github.apple.coremltools.version" : "9.0b1",
111
+ "com.github.apple.coremltools.source_dialect" : "TorchScript"
112
+ },
113
+ "generatedClassName" : "parakeet_mel_encoder",
114
+ "method" : "predict"
115
+ }
116
+ ]
MelEncoder.mlmodelc/model.mil ADDED
The diff for this file is too large to render. See raw diff
 
MelEncoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:351c7a3bee2bf563472a5b09a2dde37b940d59aa23ef39a201c9885c7f010c61
3
+ size 595166912
Melspectrogram_15s.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69c14cb1c88f889264d81aaf34d927afd46a1fab42b762e2ca506e496f2b0f6b
3
+ size 243
Melspectrogram_15s.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bf5c6d29eefd6aca3a2775848fc13d169db0d2a399fc42f0d41505403de0c98
3
+ size 400
Melspectrogram_15s.mlmodelc/metadata.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16)",
11
+ "shortDescription" : "",
12
+ "shape" : "[]",
13
+ "name" : "melspectrogram",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Int32",
20
+ "formattedType" : "MultiArray (Int32 1)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1]",
23
+ "name" : "melspectrogram_length",
24
+ "type" : "MultiArray"
25
+ }
26
+ ],
27
+ "modelParameters" : [
28
+
29
+ ],
30
+ "specificationVersion" : 8,
31
+ "mlProgramOperationTypeHistogram" : {
32
+ "Range1d" : 2,
33
+ "Ios17.reshape" : 2,
34
+ "Identity" : 1,
35
+ "Ios17.matmul" : 1,
36
+ "Ios17.expandDims" : 10,
37
+ "Select" : 3,
38
+ "Ios17.add" : 4,
39
+ "Tile" : 2,
40
+ "Ios17.sliceByIndex" : 3,
41
+ "Ios16.reduceSum" : 4,
42
+ "Shape" : 3,
43
+ "Ios17.gather" : 3,
44
+ "Pad" : 1,
45
+ "Ios17.log" : 1,
46
+ "Ios17.conv" : 2,
47
+ "Ios17.sub" : 4,
48
+ "Ios17.pow" : 2,
49
+ "Ios17.cast" : 9,
50
+ "Ios17.realDiv" : 4,
51
+ "Stack" : 1,
52
+ "Ios17.concat" : 3,
53
+ "Ios17.floorDiv" : 1,
54
+ "Ios17.less" : 1,
55
+ "Ios17.sqrt" : 1,
56
+ "Ios17.greaterEqual" : 1,
57
+ "Ios17.mul" : 1
58
+ },
59
+ "computePrecision" : "Mixed (Float16, Float32, Int32, UInt16)",
60
+ "isUpdatable" : "0",
61
+ "stateSchema" : [
62
+
63
+ ],
64
+ "availability" : {
65
+ "macOS" : "14.0",
66
+ "tvOS" : "17.0",
67
+ "visionOS" : "1.0",
68
+ "watchOS" : "10.0",
69
+ "iOS" : "17.0",
70
+ "macCatalyst" : "17.0"
71
+ },
72
+ "modelType" : {
73
+ "name" : "MLModelType_mlProgram"
74
+ },
75
+ "userDefinedMetadata" : {
76
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
77
+ "com.github.apple.coremltools.version" : "8.3.0",
78
+ "com.github.apple.coremltools.source" : "torch==2.5.0"
79
+ },
80
+ "inputSchema" : [
81
+ {
82
+ "dataType" : "Float32",
83
+ "hasShapeFlexibility" : "1",
84
+ "isOptional" : "0",
85
+ "shapeFlexibility" : "1 × 1...240000",
86
+ "shapeRange" : "[[1, 1], [1, 240000]]",
87
+ "formattedType" : "MultiArray (Float32 1 × 1)",
88
+ "type" : "MultiArray",
89
+ "shape" : "[1, 1]",
90
+ "name" : "audio_signal",
91
+ "shortDescription" : ""
92
+ },
93
+ {
94
+ "hasShapeFlexibility" : "0",
95
+ "isOptional" : "0",
96
+ "dataType" : "Int32",
97
+ "formattedType" : "MultiArray (Int32 1)",
98
+ "shortDescription" : "",
99
+ "shape" : "[1]",
100
+ "name" : "audio_length",
101
+ "type" : "MultiArray"
102
+ }
103
+ ],
104
+ "generatedClassName" : "Melspectrogram_15s",
105
+ "method" : "predict"
106
+ }
107
+ ]
Melspectrogram_15s.mlmodelc/model.mil ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3404.23.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
3
+ {
4
+ func main<ios17>(tensor<int32, [1]> audio_length, tensor<fp32, [1, ?]> audio_signal) [FlexibleShapeInformation = tuple<tuple<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>, tuple<tensor<string, []>, dict<tensor<string, []>, list<tensor<int32, [2]>, ?>>>>((("DefaultShapes", {{"audio_signal", [1, 1]}}), ("RangeDims", {{"audio_signal", [[1, 1], [1, 240000]]}})))] {
5
+ tensor<int32, []> var_6 = const()[name = tensor<string, []>("op_6"), val = tensor<int32, []>(512)];
6
+ tensor<int32, [1]> var_7 = add(x = audio_length, y = var_6)[name = tensor<string, []>("op_7")];
7
+ tensor<int32, []> var_9 = const()[name = tensor<string, []>("op_9"), val = tensor<int32, []>(512)];
8
+ tensor<int32, [1]> var_10 = sub(x = var_7, y = var_9)[name = tensor<string, []>("op_10")];
9
+ tensor<int32, []> var_11 = const()[name = tensor<string, []>("op_11"), val = tensor<int32, []>(160)];
10
+ tensor<int32, [1]> floor_div_0 = floor_div(x = var_10, y = var_11)[name = tensor<string, []>("floor_div_0")];
11
+ tensor<string, []> var_12_to_fp16_dtype_0 = const()[name = tensor<string, []>("op_12_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
12
+ tensor<fp16, []> var_14_promoted_to_fp16 = const()[name = tensor<string, []>("op_14_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+0)];
13
+ tensor<fp16, [1]> floor_div_0_to_fp16 = cast(dtype = var_12_to_fp16_dtype_0, x = floor_div_0)[name = tensor<string, []>("cast_23")];
14
+ tensor<fp16, [1]> seq_len_1_cast_fp16 = add(x = floor_div_0_to_fp16, y = var_14_promoted_to_fp16)[name = tensor<string, []>("seq_len_1_cast_fp16")];
15
+ tensor<string, []> cast_0_dtype_0 = const()[name = tensor<string, []>("cast_0_dtype_0"), val = tensor<string, []>("int32")];
16
+ tensor<int32, [2]> var_28_begin_0 = const()[name = tensor<string, []>("op_28_begin_0"), val = tensor<int32, [2]>([0, 0])];
17
+ tensor<int32, [2]> var_28_end_0 = const()[name = tensor<string, []>("op_28_end_0"), val = tensor<int32, [2]>([1, 1])];
18
+ tensor<bool, [2]> var_28_end_mask_0 = const()[name = tensor<string, []>("op_28_end_mask_0"), val = tensor<bool, [2]>([true, false])];
19
+ tensor<bool, [2]> var_28_squeeze_mask_0 = const()[name = tensor<string, []>("op_28_squeeze_mask_0"), val = tensor<bool, [2]>([false, true])];
20
+ tensor<string, []> audio_signal_to_fp16_dtype_0 = const()[name = tensor<string, []>("audio_signal_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
21
+ tensor<fp16, [1, ?]> audio_signal_to_fp16 = cast(dtype = audio_signal_to_fp16_dtype_0, x = audio_signal)[name = tensor<string, []>("cast_21")];
22
+ tensor<fp16, [1]> var_28_cast_fp16 = slice_by_index(begin = var_28_begin_0, end = var_28_end_0, end_mask = var_28_end_mask_0, squeeze_mask = var_28_squeeze_mask_0, x = audio_signal_to_fp16)[name = tensor<string, []>("op_28_cast_fp16")];
23
+ tensor<int32, [1]> var_30_axes_0 = const()[name = tensor<string, []>("op_30_axes_0"), val = tensor<int32, [1]>([1])];
24
+ tensor<fp16, [1, 1]> var_30_cast_fp16 = expand_dims(axes = var_30_axes_0, x = var_28_cast_fp16)[name = tensor<string, []>("op_30_cast_fp16")];
25
+ tensor<int32, [2]> var_40_begin_0 = const()[name = tensor<string, []>("op_40_begin_0"), val = tensor<int32, [2]>([0, 1])];
26
+ tensor<int32, [2]> var_40_end_0 = const()[name = tensor<string, []>("op_40_end_0"), val = tensor<int32, [2]>([1, 0])];
27
+ tensor<bool, [2]> var_40_end_mask_0 = const()[name = tensor<string, []>("op_40_end_mask_0"), val = tensor<bool, [2]>([true, true])];
28
+ tensor<fp16, [1, ?]> var_40_cast_fp16 = slice_by_index(begin = var_40_begin_0, end = var_40_end_0, end_mask = var_40_end_mask_0, x = audio_signal_to_fp16)[name = tensor<string, []>("op_40_cast_fp16")];
29
+ tensor<int32, [2]> var_50_begin_0 = const()[name = tensor<string, []>("op_50_begin_0"), val = tensor<int32, [2]>([0, 0])];
30
+ tensor<int32, [2]> var_50_end_0 = const()[name = tensor<string, []>("op_50_end_0"), val = tensor<int32, [2]>([1, -1])];
31
+ tensor<bool, [2]> var_50_end_mask_0 = const()[name = tensor<string, []>("op_50_end_mask_0"), val = tensor<bool, [2]>([true, false])];
32
+ tensor<fp16, [1, ?]> var_50_cast_fp16 = slice_by_index(begin = var_50_begin_0, end = var_50_end_0, end_mask = var_50_end_mask_0, x = audio_signal_to_fp16)[name = tensor<string, []>("op_50_cast_fp16")];
33
+ tensor<fp16, []> var_51_to_fp16 = const()[name = tensor<string, []>("op_51_to_fp16"), val = tensor<fp16, []>(0x1.f0cp-1)];
34
+ tensor<fp16, [1, ?]> var_52_cast_fp16 = mul(x = var_50_cast_fp16, y = var_51_to_fp16)[name = tensor<string, []>("op_52_cast_fp16")];
35
+ tensor<fp16, [1, ?]> var_54_cast_fp16 = sub(x = var_40_cast_fp16, y = var_52_cast_fp16)[name = tensor<string, []>("op_54_cast_fp16")];
36
+ tensor<int32, []> var_56 = const()[name = tensor<string, []>("op_56"), val = tensor<int32, []>(1)];
37
+ tensor<bool, []> input_1_interleave_0 = const()[name = tensor<string, []>("input_1_interleave_0"), val = tensor<bool, []>(false)];
38
+ tensor<fp16, [1, ?]> input_1_cast_fp16 = concat(axis = var_56, interleave = input_1_interleave_0, values = (var_30_cast_fp16, var_54_cast_fp16))[name = tensor<string, []>("input_1_cast_fp16")];
39
+ tensor<int32, [3]> concat_0x = const()[name = tensor<string, []>("concat_0x"), val = tensor<int32, [3]>([1, 1, -1])];
40
+ tensor<fp16, [1, 1, ?]> input_3_cast_fp16 = reshape(shape = concat_0x, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
41
+ tensor<int32, [6]> input_5_pad_0 = const()[name = tensor<string, []>("input_5_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 256, 256])];
42
+ tensor<string, []> input_5_mode_0 = const()[name = tensor<string, []>("input_5_mode_0"), val = tensor<string, []>("reflect")];
43
+ tensor<fp16, []> const_0_to_fp16 = const()[name = tensor<string, []>("const_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
44
+ tensor<fp16, [1, 1, ?]> input_5_cast_fp16 = pad(constant_val = const_0_to_fp16, mode = input_5_mode_0, pad = input_5_pad_0, x = input_3_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
45
+ tensor<int32, [2]> concat_1x = const()[name = tensor<string, []>("concat_1x"), val = tensor<int32, [2]>([1, -1])];
46
+ tensor<fp16, [1, ?]> input_cast_fp16 = reshape(shape = concat_1x, x = input_5_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
47
+ tensor<int32, [1]> expand_dims_3 = const()[name = tensor<string, []>("expand_dims_3"), val = tensor<int32, [1]>([160])];
48
+ tensor<int32, [1]> expand_dims_4_axes_0 = const()[name = tensor<string, []>("expand_dims_4_axes_0"), val = tensor<int32, [1]>([1])];
49
+ tensor<fp16, [1, 1, ?]> expand_dims_4_cast_fp16 = expand_dims(axes = expand_dims_4_axes_0, x = input_cast_fp16)[name = tensor<string, []>("expand_dims_4_cast_fp16")];
50
+ tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
51
+ tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
52
+ tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
53
+ tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
54
+ tensor<fp16, [257, 1, 512]> expand_dims_1_to_fp16 = const()[name = tensor<string, []>("expand_dims_1_to_fp16"), val = tensor<fp16, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
55
+ tensor<fp16, [1, 257, ?]> conv_0_cast_fp16 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_0_cast_fp16")];
56
+ tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
57
+ tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
58
+ tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
59
+ tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
60
+ tensor<fp16, [257, 1, 512]> expand_dims_2_to_fp16 = const()[name = tensor<string, []>("expand_dims_2_to_fp16"), val = tensor<fp16, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(263296)))];
61
+ tensor<fp16, [1, 257, ?]> conv_1_cast_fp16 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_1_cast_fp16")];
62
+ tensor<int32, []> stack_0_axis_0 = const()[name = tensor<string, []>("stack_0_axis_0"), val = tensor<int32, []>(-1)];
63
+ tensor<fp16, [1, 257, ?, 2]> stack_0_cast_fp16 = stack(axis = stack_0_axis_0, values = (conv_0_cast_fp16, conv_1_cast_fp16))[name = tensor<string, []>("stack_0_cast_fp16")];
64
+ tensor<fp16, []> var_93_promoted_to_fp16 = const()[name = tensor<string, []>("op_93_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
65
+ tensor<fp16, [1, 257, ?, 2]> var_94_cast_fp16 = pow(x = stack_0_cast_fp16, y = var_93_promoted_to_fp16)[name = tensor<string, []>("op_94_cast_fp16")];
66
+ tensor<int32, [1]> var_99_axes_0 = const()[name = tensor<string, []>("op_99_axes_0"), val = tensor<int32, [1]>([-1])];
67
+ tensor<bool, []> var_99_keep_dims_0 = const()[name = tensor<string, []>("op_99_keep_dims_0"), val = tensor<bool, []>(false)];
68
+ tensor<fp16, [1, 257, ?]> var_99_cast_fp16 = reduce_sum(axes = var_99_axes_0, keep_dims = var_99_keep_dims_0, x = var_94_cast_fp16)[name = tensor<string, []>("op_99_cast_fp16")];
69
+ tensor<fp16, [1, 257, ?]> x_7_cast_fp16 = identity(x = var_99_cast_fp16)[name = tensor<string, []>("x_7_cast_fp16")];
70
+ tensor<bool, []> x_9_transpose_x_0 = const()[name = tensor<string, []>("x_9_transpose_x_0"), val = tensor<bool, []>(false)];
71
+ tensor<bool, []> x_9_transpose_y_0 = const()[name = tensor<string, []>("x_9_transpose_y_0"), val = tensor<bool, []>(false)];
72
+ tensor<fp16, [1, 128, 257]> filterbanks_to_fp16 = const()[name = tensor<string, []>("filterbanks_to_fp16"), val = tensor<fp16, [1, 128, 257]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(526528)))];
73
+ tensor<fp16, [1, 128, ?]> x_9_cast_fp16 = matmul(transpose_x = x_9_transpose_x_0, transpose_y = x_9_transpose_y_0, x = filterbanks_to_fp16, y = x_7_cast_fp16)[name = tensor<string, []>("x_9_cast_fp16")];
74
+ tensor<fp16, []> var_108_to_fp16 = const()[name = tensor<string, []>("op_108_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
75
+ tensor<fp16, [1, 128, ?]> var_109_cast_fp16 = add(x = x_9_cast_fp16, y = var_108_to_fp16)[name = tensor<string, []>("op_109_cast_fp16")];
76
+ tensor<fp32, []> x_11_epsilon_0 = const()[name = tensor<string, []>("x_11_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
77
+ tensor<fp16, [1, 128, ?]> x_11_cast_fp16 = log(epsilon = x_11_epsilon_0, x = var_109_cast_fp16)[name = tensor<string, []>("x_11_cast_fp16")];
78
+ tensor<int32, []> var_114 = const()[name = tensor<string, []>("op_114"), val = tensor<int32, []>(1)];
79
+ tensor<int32, [3]> var_116_shape_cast_fp16 = shape(x = x_11_cast_fp16)[name = tensor<string, []>("op_116_shape_cast_fp16")];
80
+ tensor<int32, []> gather_5_axis_0 = const()[name = tensor<string, []>("gather_5_axis_0"), val = tensor<int32, []>(0)];
81
+ tensor<int32, []> gather_5_batch_dims_0 = const()[name = tensor<string, []>("gather_5_batch_dims_0"), val = tensor<int32, []>(0)];
82
+ tensor<bool, []> gather_5_validate_indices_0 = const()[name = tensor<string, []>("gather_5_validate_indices_0"), val = tensor<bool, []>(false)];
83
+ tensor<string, []> var_116_shape_cast_fp16_to_uint16_dtype_0 = const()[name = tensor<string, []>("op_116_shape_cast_fp16_to_uint16_dtype_0"), val = tensor<string, []>("uint16")];
84
+ tensor<uint16, []> select_5_to_uint16 = const()[name = tensor<string, []>("select_5_to_uint16"), val = tensor<uint16, []>(2)];
85
+ tensor<uint16, [3]> var_116_shape_cast_fp16_to_uint16 = cast(dtype = var_116_shape_cast_fp16_to_uint16_dtype_0, x = var_116_shape_cast_fp16)[name = tensor<string, []>("cast_20")];
86
+ tensor<uint16, []> gather_5_cast_uint16 = gather(axis = gather_5_axis_0, batch_dims = gather_5_batch_dims_0, indices = select_5_to_uint16, validate_indices = gather_5_validate_indices_0, x = var_116_shape_cast_fp16_to_uint16)[name = tensor<string, []>("gather_5_cast_uint16")];
87
+ tensor<string, []> gather_5_cast_uint16_to_int32_dtype_0 = const()[name = tensor<string, []>("gather_5_cast_uint16_to_int32_dtype_0"), val = tensor<string, []>("int32")];
88
+ tensor<int32, []> const_1 = const()[name = tensor<string, []>("const_1"), val = tensor<int32, []>(0)];
89
+ tensor<int32, []> const_2 = const()[name = tensor<string, []>("const_2"), val = tensor<int32, []>(1)];
90
+ tensor<int32, []> gather_5_cast_uint16_to_int32 = cast(dtype = gather_5_cast_uint16_to_int32_dtype_0, x = gather_5_cast_uint16)[name = tensor<string, []>("cast_19")];
91
+ tensor<int32, [?]> var_124 = range_1d(end = gather_5_cast_uint16_to_int32, start = const_1, step = const_2)[name = tensor<string, []>("op_124")];
92
+ tensor<int32, [1]> var_126_axes_0 = const()[name = tensor<string, []>("op_126_axes_0"), val = tensor<int32, [1]>([0])];
93
+ tensor<int32, [1, ?]> var_126 = expand_dims(axes = var_126_axes_0, x = var_124)[name = tensor<string, []>("op_126")];
94
+ tensor<int32, []> concat_2_axis_0 = const()[name = tensor<string, []>("concat_2_axis_0"), val = tensor<int32, []>(0)];
95
+ tensor<bool, []> concat_2_interleave_0 = const()[name = tensor<string, []>("concat_2_interleave_0"), val = tensor<bool, []>(false)];
96
+ tensor<int32, [2]> concat_2 = concat(axis = concat_2_axis_0, interleave = concat_2_interleave_0, values = (var_114, gather_5_cast_uint16_to_int32))[name = tensor<string, []>("concat_2")];
97
+ tensor<int32, [2]> shape_6 = shape(x = var_126)[name = tensor<string, []>("shape_6")];
98
+ tensor<int32, [2]> real_div_0 = real_div(x = concat_2, y = shape_6)[name = tensor<string, []>("real_div_0")];
99
+ tensor<int32, [?, ?]> time_steps = tile(reps = real_div_0, x = var_126)[name = tensor<string, []>("time_steps")];
100
+ tensor<int32, [1]> var_131_axes_0 = const()[name = tensor<string, []>("op_131_axes_0"), val = tensor<int32, [1]>([1])];
101
+ tensor<int32, [1]> melspectrogram_length = cast(dtype = cast_0_dtype_0, x = seq_len_1_cast_fp16)[name = tensor<string, []>("cast_22")];
102
+ tensor<int32, [1, 1]> var_131 = expand_dims(axes = var_131_axes_0, x = melspectrogram_length)[name = tensor<string, []>("op_131")];
103
+ tensor<bool, [?, ?]> valid_mask = less(x = time_steps, y = var_131)[name = tensor<string, []>("valid_mask")];
104
+ tensor<int32, [1]> var_134_axes_0 = const()[name = tensor<string, []>("op_134_axes_0"), val = tensor<int32, [1]>([1])];
105
+ tensor<bool, [?, 1, ?]> var_134 = expand_dims(axes = var_134_axes_0, x = valid_mask)[name = tensor<string, []>("op_134")];
106
+ tensor<fp16, []> var_135_to_fp16 = const()[name = tensor<string, []>("op_135_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
107
+ tensor<fp16, [1, 128, ?]> var_136_cast_fp16 = select(a = x_11_cast_fp16, b = var_135_to_fp16, cond = var_134)[name = tensor<string, []>("op_136_cast_fp16")];
108
+ tensor<int32, [1]> x_mean_numerator_axes_0 = const()[name = tensor<string, []>("x_mean_numerator_axes_0"), val = tensor<int32, [1]>([2])];
109
+ tensor<bool, []> x_mean_numerator_keep_dims_0 = const()[name = tensor<string, []>("x_mean_numerator_keep_dims_0"), val = tensor<bool, []>(false)];
110
+ tensor<fp16, [1, 128]> x_mean_numerator_cast_fp16 = reduce_sum(axes = x_mean_numerator_axes_0, keep_dims = x_mean_numerator_keep_dims_0, x = var_136_cast_fp16)[name = tensor<string, []>("x_mean_numerator_cast_fp16")];
111
+ tensor<int32, [1]> x_mean_denominator_axes_0 = const()[name = tensor<string, []>("x_mean_denominator_axes_0"), val = tensor<int32, [1]>([1])];
112
+ tensor<bool, []> x_mean_denominator_keep_dims_0 = const()[name = tensor<string, []>("x_mean_denominator_keep_dims_0"), val = tensor<bool, []>(false)];
113
+ tensor<string, []> cast_4_to_fp16_dtype_0 = const()[name = tensor<string, []>("cast_4_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
114
+ tensor<fp16, [?, ?]> valid_mask_to_fp16 = cast(dtype = cast_4_to_fp16_dtype_0, x = valid_mask)[name = tensor<string, []>("cast_18")];
115
+ tensor<fp16, [?]> x_mean_denominator_cast_fp16 = reduce_sum(axes = x_mean_denominator_axes_0, keep_dims = x_mean_denominator_keep_dims_0, x = valid_mask_to_fp16)[name = tensor<string, []>("x_mean_denominator_cast_fp16")];
116
+ tensor<int32, [1]> var_148_axes_0 = const()[name = tensor<string, []>("op_148_axes_0"), val = tensor<int32, [1]>([1])];
117
+ tensor<fp16, [?, 1]> var_148_cast_fp16 = expand_dims(axes = var_148_axes_0, x = x_mean_denominator_cast_fp16)[name = tensor<string, []>("op_148_cast_fp16")];
118
+ tensor<fp16, [?, 128]> x_mean_cast_fp16 = real_div(x = x_mean_numerator_cast_fp16, y = var_148_cast_fp16)[name = tensor<string, []>("x_mean_cast_fp16")];
119
+ tensor<int32, [1]> var_153_axes_0 = const()[name = tensor<string, []>("op_153_axes_0"), val = tensor<int32, [1]>([2])];
120
+ tensor<fp16, [?, 128, 1]> var_153_cast_fp16 = expand_dims(axes = var_153_axes_0, x = x_mean_cast_fp16)[name = tensor<string, []>("op_153_cast_fp16")];
121
+ tensor<fp16, [?, 128, ?]> var_155_cast_fp16 = sub(x = x_11_cast_fp16, y = var_153_cast_fp16)[name = tensor<string, []>("op_155_cast_fp16")];
122
+ tensor<fp16, []> var_156_to_fp16 = const()[name = tensor<string, []>("op_156_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
123
+ tensor<fp16, [?, 128, ?]> var_157_cast_fp16 = select(a = var_155_cast_fp16, b = var_156_to_fp16, cond = var_134)[name = tensor<string, []>("op_157_cast_fp16")];
124
+ tensor<fp16, []> var_158_promoted_to_fp16 = const()[name = tensor<string, []>("op_158_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
125
+ tensor<fp16, [?, 128, ?]> var_159_cast_fp16 = pow(x = var_157_cast_fp16, y = var_158_promoted_to_fp16)[name = tensor<string, []>("op_159_cast_fp16")];
126
+ tensor<int32, [1]> var_164_axes_0 = const()[name = tensor<string, []>("op_164_axes_0"), val = tensor<int32, [1]>([2])];
127
+ tensor<bool, []> var_164_keep_dims_0 = const()[name = tensor<string, []>("op_164_keep_dims_0"), val = tensor<bool, []>(false)];
128
+ tensor<fp16, [?, 128]> var_164_cast_fp16 = reduce_sum(axes = var_164_axes_0, keep_dims = var_164_keep_dims_0, x = var_159_cast_fp16)[name = tensor<string, []>("op_164_cast_fp16")];
129
+ tensor<fp16, []> var_168_to_fp16 = const()[name = tensor<string, []>("op_168_to_fp16"), val = tensor<fp16, []>(0x1p+0)];
130
+ tensor<fp16, [?, 1]> var_169_cast_fp16 = sub(x = var_148_cast_fp16, y = var_168_to_fp16)[name = tensor<string, []>("op_169_cast_fp16")];
131
+ tensor<fp16, [?, 128]> var_170_cast_fp16 = real_div(x = var_164_cast_fp16, y = var_169_cast_fp16)[name = tensor<string, []>("op_170_cast_fp16")];
132
+ tensor<fp16, [?, 128]> x_std_1_cast_fp16 = sqrt(x = var_170_cast_fp16)[name = tensor<string, []>("x_std_1_cast_fp16")];
133
+ tensor<fp16, []> var_172_to_fp16 = const()[name = tensor<string, []>("op_172_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
134
+ tensor<fp16, [?, 128]> x_std_cast_fp16 = add(x = x_std_1_cast_fp16, y = var_172_to_fp16)[name = tensor<string, []>("x_std_cast_fp16")];
135
+ tensor<int32, [1]> var_180_axes_0 = const()[name = tensor<string, []>("op_180_axes_0"), val = tensor<int32, [1]>([2])];
136
+ tensor<fp16, [?, 128, 1]> var_180_cast_fp16 = expand_dims(axes = var_180_axes_0, x = x_std_cast_fp16)[name = tensor<string, []>("op_180_cast_fp16")];
137
+ tensor<fp16, [?, 128, ?]> x_cast_fp16 = real_div(x = var_155_cast_fp16, y = var_180_cast_fp16)[name = tensor<string, []>("x_cast_fp16")];
138
+ tensor<int32, [3]> var_183_shape_cast_fp16 = shape(x = x_cast_fp16)[name = tensor<string, []>("op_183_shape_cast_fp16")];
139
+ tensor<int32, []> gather_6_axis_0 = const()[name = tensor<string, []>("gather_6_axis_0"), val = tensor<int32, []>(0)];
140
+ tensor<int32, []> gather_6_batch_dims_0 = const()[name = tensor<string, []>("gather_6_batch_dims_0"), val = tensor<int32, []>(0)];
141
+ tensor<bool, []> gather_6_validate_indices_0 = const()[name = tensor<string, []>("gather_6_validate_indices_0"), val = tensor<bool, []>(false)];
142
+ tensor<string, []> var_183_shape_cast_fp16_to_uint16_dtype_0 = const()[name = tensor<string, []>("op_183_shape_cast_fp16_to_uint16_dtype_0"), val = tensor<string, []>("uint16")];
143
+ tensor<uint16, []> select_6_to_uint16 = const()[name = tensor<string, []>("select_6_to_uint16"), val = tensor<uint16, []>(2)];
144
+ tensor<uint16, [3]> var_183_shape_cast_fp16_to_uint16 = cast(dtype = var_183_shape_cast_fp16_to_uint16_dtype_0, x = var_183_shape_cast_fp16)[name = tensor<string, []>("cast_17")];
145
+ tensor<uint16, []> gather_6_cast_uint16 = gather(axis = gather_6_axis_0, batch_dims = gather_6_batch_dims_0, indices = select_6_to_uint16, validate_indices = gather_6_validate_indices_0, x = var_183_shape_cast_fp16_to_uint16)[name = tensor<string, []>("gather_6_cast_uint16")];
146
+ tensor<string, []> gather_6_cast_uint16_to_int32_dtype_0 = const()[name = tensor<string, []>("gather_6_cast_uint16_to_int32_dtype_0"), val = tensor<string, []>("int32")];
147
+ tensor<int32, []> const_3 = const()[name = tensor<string, []>("const_3"), val = tensor<int32, []>(0)];
148
+ tensor<int32, []> const_4 = const()[name = tensor<string, []>("const_4"), val = tensor<int32, []>(1)];
149
+ tensor<int32, []> gather_6_cast_uint16_to_int32 = cast(dtype = gather_6_cast_uint16_to_int32_dtype_0, x = gather_6_cast_uint16)[name = tensor<string, []>("cast_16")];
150
+ tensor<int32, [?]> mask_1 = range_1d(end = gather_6_cast_uint16_to_int32, start = const_3, step = const_4)[name = tensor<string, []>("mask_1")];
151
+ tensor<int32, []> gather_7_axis_0 = const()[name = tensor<string, []>("gather_7_axis_0"), val = tensor<int32, []>(0)];
152
+ tensor<int32, []> gather_7_batch_dims_0 = const()[name = tensor<string, []>("gather_7_batch_dims_0"), val = tensor<int32, []>(0)];
153
+ tensor<bool, []> gather_7_validate_indices_0 = const()[name = tensor<string, []>("gather_7_validate_indices_0"), val = tensor<bool, []>(false)];
154
+ tensor<uint16, []> select_7_to_uint16 = const()[name = tensor<string, []>("select_7_to_uint16"), val = tensor<uint16, []>(0)];
155
+ tensor<uint16, []> gather_7_cast_uint16 = gather(axis = gather_7_axis_0, batch_dims = gather_7_batch_dims_0, indices = select_7_to_uint16, validate_indices = gather_7_validate_indices_0, x = var_183_shape_cast_fp16_to_uint16)[name = tensor<string, []>("gather_7_cast_uint16")];
156
+ tensor<string, []> gather_7_cast_uint16_to_int32_dtype_0 = const()[name = tensor<string, []>("gather_7_cast_uint16_to_int32_dtype_0"), val = tensor<string, []>("int32")];
157
+ tensor<int32, []> var_195 = const()[name = tensor<string, []>("op_195"), val = tensor<int32, []>(1)];
158
+ tensor<int32, []> concat_3_axis_0 = const()[name = tensor<string, []>("concat_3_axis_0"), val = tensor<int32, []>(0)];
159
+ tensor<bool, []> concat_3_interleave_0 = const()[name = tensor<string, []>("concat_3_interleave_0"), val = tensor<bool, []>(false)];
160
+ tensor<int32, []> gather_7_cast_uint16_to_int32 = cast(dtype = gather_7_cast_uint16_to_int32_dtype_0, x = gather_7_cast_uint16)[name = tensor<string, []>("cast_15")];
161
+ tensor<int32, [2]> concat_3 = concat(axis = concat_3_axis_0, interleave = concat_3_interleave_0, values = (gather_7_cast_uint16_to_int32, var_195))[name = tensor<string, []>("concat_3")];
162
+ tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
163
+ tensor<int32, [1, ?]> expand_dims_0 = expand_dims(axes = expand_dims_0_axes_0, x = mask_1)[name = tensor<string, []>("expand_dims_0")];
164
+ tensor<int32, [?, ?]> var_197 = tile(reps = concat_3, x = expand_dims_0)[name = tensor<string, []>("op_197")];
165
+ tensor<bool, [?, ?]> mask = greater_equal(x = var_197, y = var_131)[name = tensor<string, []>("mask")];
166
+ tensor<int32, [1]> var_202_axes_0 = const()[name = tensor<string, []>("op_202_axes_0"), val = tensor<int32, [1]>([1])];
167
+ tensor<bool, [?, 1, ?]> var_202 = expand_dims(axes = var_202_axes_0, x = mask)[name = tensor<string, []>("op_202")];
168
+ tensor<fp16, []> var_216_to_fp16 = const()[name = tensor<string, []>("op_216_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
169
+ tensor<fp16, [?, 128, ?]> melspectrogram = select(a = var_216_to_fp16, b = x_cast_fp16, cond = var_202)[name = tensor<string, []>("op_217_cast_fp16")];
170
+ } -> (melspectrogram, melspectrogram_length);
171
+ }
Melspectrogram_15s.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:023c2303b7c3a1fafed92fc6ec46c1d43a48c0bbcdf33d6441d383a61747734c
3
+ size 592384
ParakeetDecoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c88c077549fa8f428d30a75e3abeb031f3069fb4970e2ba34f451880c6526848
3
+ size 243
ParakeetDecoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b3f7039bd77de949917b8d1fe53d892a925e0cae1ad1b3cca2c5d57b922392c
3
+ size 438
ParakeetDecoder.mlmodelc/model.mil ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3405.2.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
3
+ {
4
+ func main<ios15>(tensor<fp32, [2, 1, 640]> c_in, tensor<fp32, [2, 1, 640]> h_in, tensor<int32, [1]> target_lengths, tensor<int32, [1, ?]> targets) [FlexibleShapeInformation = tuple<tuple<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>, tuple<tensor<string, []>, dict<tensor<string, []>, list<tensor<int32, [2]>, ?>>>>((("DefaultShapes", {{"targets", [1, 1]}}), ("RangeDims", {{"targets", [[1, 1], [1, 1000]]}})))] {
5
+ tensor<int32, []> input_axis_0 = const()[name = tensor<string, []>("input_axis_0"), val = tensor<int32, []>(0)];
6
+ tensor<fp16, [8193, 640]> embed_weight_to_fp16 = const()[name = tensor<string, []>("embed_weight_to_fp16"), val = tensor<fp16, [8193, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
7
+ tensor<fp16, [1, ?, 640]> input_cast_fp16 = gather(axis = input_axis_0, indices = targets, x = embed_weight_to_fp16)[name = tensor<string, []>("input_cast_fp16")];
8
+ tensor<string, []> input_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("input_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
9
+ tensor<int32, []> split_0_num_splits_0 = const()[name = tensor<string, []>("split_0_num_splits_0"), val = tensor<int32, []>(2)];
10
+ tensor<int32, []> split_0_axis_0 = const()[name = tensor<string, []>("split_0_axis_0"), val = tensor<int32, []>(0)];
11
+ tensor<string, []> h_in_to_fp16_dtype_0 = const()[name = tensor<string, []>("h_in_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
12
+ tensor<fp16, [2, 1, 640]> h_in_to_fp16 = cast(dtype = h_in_to_fp16_dtype_0, x = h_in)[name = tensor<string, []>("cast_12")];
13
+ tensor<fp16, [1, 1, 640]> split_0_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_0_cast_fp16_1 = split(axis = split_0_axis_0, num_splits = split_0_num_splits_0, x = h_in_to_fp16)[name = tensor<string, []>("split_0_cast_fp16")];
14
+ tensor<int32, []> split_1_num_splits_0 = const()[name = tensor<string, []>("split_1_num_splits_0"), val = tensor<int32, []>(2)];
15
+ tensor<int32, []> split_1_axis_0 = const()[name = tensor<string, []>("split_1_axis_0"), val = tensor<int32, []>(0)];
16
+ tensor<string, []> c_in_to_fp16_dtype_0 = const()[name = tensor<string, []>("c_in_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
17
+ tensor<fp16, [2, 1, 640]> c_in_to_fp16 = cast(dtype = c_in_to_fp16_dtype_0, x = c_in)[name = tensor<string, []>("cast_11")];
18
+ tensor<fp16, [1, 1, 640]> split_1_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_1_cast_fp16_1 = split(axis = split_1_axis_0, num_splits = split_1_num_splits_0, x = c_in_to_fp16)[name = tensor<string, []>("split_1_cast_fp16")];
19
+ tensor<fp32, [2560]> concat_0 = const()[name = tensor<string, []>("concat_0"), val = tensor<fp32, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10487168)))];
20
+ tensor<fp32, [2560, 640]> concat_1 = const()[name = tensor<string, []>("concat_1"), val = tensor<fp32, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10497472)))];
21
+ tensor<fp32, [2560, 640]> concat_2 = const()[name = tensor<string, []>("concat_2"), val = tensor<fp32, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17051136)))];
22
+ tensor<int32, [1]> var_25_lstm_layer_0_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("op_25_lstm_layer_0_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
23
+ tensor<fp16, [1, 640]> var_25_lstm_layer_0_lstm_h0_squeeze_cast_fp16 = squeeze(axes = var_25_lstm_layer_0_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_0)[name = tensor<string, []>("op_25_lstm_layer_0_lstm_h0_squeeze_cast_fp16")];
24
+ tensor<string, []> var_25_lstm_layer_0_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_25_lstm_layer_0_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
25
+ tensor<int32, [1]> var_25_lstm_layer_0_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("op_25_lstm_layer_0_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
26
+ tensor<fp16, [1, 640]> var_25_lstm_layer_0_lstm_c0_squeeze_cast_fp16 = squeeze(axes = var_25_lstm_layer_0_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_0)[name = tensor<string, []>("op_25_lstm_layer_0_lstm_c0_squeeze_cast_fp16")];
27
+ tensor<string, []> var_25_lstm_layer_0_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_25_lstm_layer_0_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
28
+ tensor<string, []> var_25_lstm_layer_0_direction_0 = const()[name = tensor<string, []>("op_25_lstm_layer_0_direction_0"), val = tensor<string, []>("forward")];
29
+ tensor<bool, []> var_25_lstm_layer_0_output_sequence_0 = const()[name = tensor<string, []>("op_25_lstm_layer_0_output_sequence_0"), val = tensor<bool, []>(true)];
30
+ tensor<string, []> var_25_lstm_layer_0_recurrent_activation_0 = const()[name = tensor<string, []>("op_25_lstm_layer_0_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
31
+ tensor<string, []> var_25_lstm_layer_0_cell_activation_0 = const()[name = tensor<string, []>("op_25_lstm_layer_0_cell_activation_0"), val = tensor<string, []>("tanh")];
32
+ tensor<string, []> var_25_lstm_layer_0_activation_0 = const()[name = tensor<string, []>("op_25_lstm_layer_0_activation_0"), val = tensor<string, []>("tanh")];
33
+ tensor<fp32, [1, 640]> var_25_lstm_layer_0_lstm_c0_squeeze_cast_fp16_to_fp32 = cast(dtype = var_25_lstm_layer_0_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0, x = var_25_lstm_layer_0_lstm_c0_squeeze_cast_fp16)[name = tensor<string, []>("cast_9")];
34
+ tensor<fp32, [1, 640]> var_25_lstm_layer_0_lstm_h0_squeeze_cast_fp16_to_fp32 = cast(dtype = var_25_lstm_layer_0_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0, x = var_25_lstm_layer_0_lstm_h0_squeeze_cast_fp16)[name = tensor<string, []>("cast_10")];
35
+ tensor<fp32, [1, ?, 640]> input_cast_fp16_to_fp32 = cast(dtype = input_cast_fp16_to_fp32_dtype_0, x = input_cast_fp16)[name = tensor<string, []>("cast_13")];
36
+ tensor<fp32, [1, ?, 640]> var_25_lstm_layer_0_0, tensor<fp32, [?, 640]> var_25_lstm_layer_0_1, tensor<fp32, [?, 640]> var_25_lstm_layer_0_2 = lstm(activation = var_25_lstm_layer_0_activation_0, bias = concat_0, cell_activation = var_25_lstm_layer_0_cell_activation_0, direction = var_25_lstm_layer_0_direction_0, initial_c = var_25_lstm_layer_0_lstm_c0_squeeze_cast_fp16_to_fp32, initial_h = var_25_lstm_layer_0_lstm_h0_squeeze_cast_fp16_to_fp32, output_sequence = var_25_lstm_layer_0_output_sequence_0, recurrent_activation = var_25_lstm_layer_0_recurrent_activation_0, weight_hh = concat_2, weight_ih = concat_1, x = input_cast_fp16_to_fp32)[name = tensor<string, []>("op_25_lstm_layer_0")];
37
+ tensor<fp32, [2560]> concat_3 = const()[name = tensor<string, []>("concat_3"), val = tensor<fp32, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23604800)))];
38
+ tensor<fp32, [2560, 640]> concat_4 = const()[name = tensor<string, []>("concat_4"), val = tensor<fp32, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23615104)))];
39
+ tensor<fp32, [2560, 640]> concat_5 = const()[name = tensor<string, []>("concat_5"), val = tensor<fp32, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30168768)))];
40
+ tensor<int32, [1]> var_25_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("op_25_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
41
+ tensor<fp16, [1, 640]> var_25_lstm_h0_squeeze_cast_fp16 = squeeze(axes = var_25_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_1)[name = tensor<string, []>("op_25_lstm_h0_squeeze_cast_fp16")];
42
+ tensor<string, []> var_25_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_25_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
43
+ tensor<int32, [1]> var_25_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("op_25_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
44
+ tensor<fp16, [1, 640]> var_25_lstm_c0_squeeze_cast_fp16 = squeeze(axes = var_25_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_1)[name = tensor<string, []>("op_25_lstm_c0_squeeze_cast_fp16")];
45
+ tensor<string, []> var_25_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_25_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
46
+ tensor<string, []> var_25_direction_0 = const()[name = tensor<string, []>("op_25_direction_0"), val = tensor<string, []>("forward")];
47
+ tensor<bool, []> var_25_output_sequence_0 = const()[name = tensor<string, []>("op_25_output_sequence_0"), val = tensor<bool, []>(true)];
48
+ tensor<string, []> var_25_recurrent_activation_0 = const()[name = tensor<string, []>("op_25_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
49
+ tensor<string, []> var_25_cell_activation_0 = const()[name = tensor<string, []>("op_25_cell_activation_0"), val = tensor<string, []>("tanh")];
50
+ tensor<string, []> var_25_activation_0 = const()[name = tensor<string, []>("op_25_activation_0"), val = tensor<string, []>("tanh")];
51
+ tensor<fp32, [1, 640]> var_25_lstm_c0_squeeze_cast_fp16_to_fp32 = cast(dtype = var_25_lstm_c0_squeeze_cast_fp16_to_fp32_dtype_0, x = var_25_lstm_c0_squeeze_cast_fp16)[name = tensor<string, []>("cast_7")];
52
+ tensor<fp32, [1, 640]> var_25_lstm_h0_squeeze_cast_fp16_to_fp32 = cast(dtype = var_25_lstm_h0_squeeze_cast_fp16_to_fp32_dtype_0, x = var_25_lstm_h0_squeeze_cast_fp16)[name = tensor<string, []>("cast_8")];
53
+ tensor<fp32, [1, ?, 640]> decoder_output, tensor<fp32, [?, 640]> var_25_1, tensor<fp32, [?, 640]> var_25_2 = lstm(activation = var_25_activation_0, bias = concat_3, cell_activation = var_25_cell_activation_0, direction = var_25_direction_0, initial_c = var_25_lstm_c0_squeeze_cast_fp16_to_fp32, initial_h = var_25_lstm_h0_squeeze_cast_fp16_to_fp32, output_sequence = var_25_output_sequence_0, recurrent_activation = var_25_recurrent_activation_0, weight_hh = concat_5, weight_ih = concat_4, x = var_25_lstm_layer_0_0)[name = tensor<string, []>("op_25")];
54
+ tensor<int32, []> var_26_axis_0 = const()[name = tensor<string, []>("op_26_axis_0"), val = tensor<int32, []>(0)];
55
+ tensor<string, []> var_25_lstm_layer_0_1_to_fp16_dtype_0 = const()[name = tensor<string, []>("op_25_lstm_layer_0_1_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
56
+ tensor<string, []> var_25_1_to_fp16_dtype_0 = const()[name = tensor<string, []>("op_25_1_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
57
+ tensor<fp16, [?, 640]> var_25_1_to_fp16 = cast(dtype = var_25_1_to_fp16_dtype_0, x = var_25_1)[name = tensor<string, []>("cast_5")];
58
+ tensor<fp16, [?, 640]> var_25_lstm_layer_0_1_to_fp16 = cast(dtype = var_25_lstm_layer_0_1_to_fp16_dtype_0, x = var_25_lstm_layer_0_1)[name = tensor<string, []>("cast_6")];
59
+ tensor<fp16, [2, ?, 640]> var_26_cast_fp16 = stack(axis = var_26_axis_0, values = (var_25_lstm_layer_0_1_to_fp16, var_25_1_to_fp16))[name = tensor<string, []>("op_26_cast_fp16")];
60
+ tensor<string, []> var_26_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_26_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
61
+ tensor<int32, []> var_27_axis_0 = const()[name = tensor<string, []>("op_27_axis_0"), val = tensor<int32, []>(0)];
62
+ tensor<string, []> var_25_lstm_layer_0_2_to_fp16_dtype_0 = const()[name = tensor<string, []>("op_25_lstm_layer_0_2_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
63
+ tensor<string, []> var_25_2_to_fp16_dtype_0 = const()[name = tensor<string, []>("op_25_2_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
64
+ tensor<fp16, [?, 640]> var_25_2_to_fp16 = cast(dtype = var_25_2_to_fp16_dtype_0, x = var_25_2)[name = tensor<string, []>("cast_2")];
65
+ tensor<fp16, [?, 640]> var_25_lstm_layer_0_2_to_fp16 = cast(dtype = var_25_lstm_layer_0_2_to_fp16_dtype_0, x = var_25_lstm_layer_0_2)[name = tensor<string, []>("cast_3")];
66
+ tensor<fp16, [2, ?, 640]> var_27_cast_fp16 = stack(axis = var_27_axis_0, values = (var_25_lstm_layer_0_2_to_fp16, var_25_2_to_fp16))[name = tensor<string, []>("op_27_cast_fp16")];
67
+ tensor<string, []> var_27_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_27_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
68
+ tensor<fp32, [2, ?, 640]> c_out = cast(dtype = var_27_cast_fp16_to_fp32_dtype_0, x = var_27_cast_fp16)[name = tensor<string, []>("cast_1")];
69
+ tensor<fp32, [2, ?, 640]> h_out = cast(dtype = var_26_cast_fp16_to_fp32_dtype_0, x = var_26_cast_fp16)[name = tensor<string, []>("cast_4")];
70
+ tensor<int32, [1]> target_lengths_tmp = identity(x = target_lengths)[name = tensor<string, []>("target_lengths_tmp")];
71
+ } -> (decoder_output, h_out, c_out);
72
+ }
ParakeetDecoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cae05619deee8995ff4532cb34a5ab63fbc14accf38f26479735933170159c9c
3
+ size 36722432
ParakeetEncoder_15s.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9bc0e8a2ff995d47f651409dfe813571e2772292f22900a0c1c89cb62225ec3
3
+ size 243
ParakeetEncoder_15s.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97d19e4d07164239ad1e566d4a6067c05d794996d6152f18b2dd75ac86bfc221
3
+ size 387
ParakeetEncoder_15s.mlmodelc/metadata.json ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Mixed (Float16, Palettized (6 bits))",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float32",
10
+ "formattedType" : "MultiArray (Float32 1 × 188 × 1024)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 188, 1024]",
13
+ "name" : "encoder_output",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Int32",
20
+ "formattedType" : "MultiArray (Int32 1)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1]",
23
+ "name" : "encoder_output_length",
24
+ "type" : "MultiArray"
25
+ }
26
+ ],
27
+ "modelParameters" : [
28
+
29
+ ],
30
+ "specificationVersion" : 7,
31
+ "mlProgramOperationTypeHistogram" : {
32
+ "Transpose" : 171,
33
+ "Ios16.softmax" : 24,
34
+ "Split" : 24,
35
+ "Ios16.linear" : 193,
36
+ "Ios16.add" : 174,
37
+ "Select" : 72,
38
+ "Tile" : 1,
39
+ "Ios16.sigmoid" : 24,
40
+ "Ios16.logicalAnd" : 2,
41
+ "Pad" : 48,
42
+ "ExpandDims" : 5,
43
+ "Ios16.silu" : 72,
44
+ "Ios16.cast" : 4,
45
+ "Ios16.less" : 1,
46
+ "Ios16.constexprLutToDense" : 294,
47
+ "Ios16.layerNorm" : 120,
48
+ "SliceByIndex" : 48,
49
+ "Ios16.conv" : 77,
50
+ "Ios16.relu" : 3,
51
+ "Ios16.matmul" : 72,
52
+ "Ios16.reshape" : 145,
53
+ "Ios16.mul" : 99,
54
+ "Ios16.logicalNot" : 2,
55
+ "Ios16.floor" : 3
56
+ },
57
+ "computePrecision" : "Mixed (Float16, Float32, Int32)",
58
+ "isUpdatable" : "0",
59
+ "stateSchema" : [
60
+
61
+ ],
62
+ "availability" : {
63
+ "macOS" : "13.0",
64
+ "tvOS" : "16.0",
65
+ "visionOS" : "1.0",
66
+ "watchOS" : "9.0",
67
+ "iOS" : "16.0",
68
+ "macCatalyst" : "16.0"
69
+ },
70
+ "modelType" : {
71
+ "name" : "MLModelType_mlProgram"
72
+ },
73
+ "userDefinedMetadata" : {
74
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
75
+ "com.github.apple.coremltools.source" : "torch==2.5.0",
76
+ "com.github.apple.coremltools.version" : "8.3.0"
77
+ },
78
+ "inputSchema" : [
79
+ {
80
+ "hasShapeFlexibility" : "0",
81
+ "isOptional" : "0",
82
+ "dataType" : "Float32",
83
+ "formattedType" : "MultiArray (Float32 1 × 128 × 1501)",
84
+ "shortDescription" : "",
85
+ "shape" : "[1, 128, 1501]",
86
+ "name" : "audio_signal",
87
+ "type" : "MultiArray"
88
+ },
89
+ {
90
+ "hasShapeFlexibility" : "0",
91
+ "isOptional" : "0",
92
+ "dataType" : "Int32",
93
+ "formattedType" : "MultiArray (Int32 1)",
94
+ "shortDescription" : "",
95
+ "shape" : "[1]",
96
+ "name" : "length",
97
+ "type" : "MultiArray"
98
+ }
99
+ ],
100
+ "generatedClassName" : "ParakeetEncoder_6bit_15s",
101
+ "method" : "predict"
102
+ }
103
+ ]
ParakeetEncoder_15s.mlmodelc/model.mil ADDED
The diff for this file is too large to render. See raw diff
 
ParakeetEncoder_15s.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcf39b6d2ff41c623e5ec8c21fdca06100fc390adbbc926fa767d9fbaf35866d
3
+ size 445187200
Preprocessor.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9beeb989c8d66f8be11df59bc6df277ec76cee404f6865b46243835ef562f6d
3
+ size 243
Preprocessor.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbde3f2300842c1fd51ef3ff948a0bcffe65ffd2dca10707f2509f32c1d65b1d
3
+ size 486
Preprocessor.mlmodelc/metadata.json ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "shortDescription" : "int8-linear quantized - preprocessor",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float32",
10
+ "formattedType" : "MultiArray (Float32 1 × 128 × 1501)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 128, 1501]",
13
+ "name" : "mel",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Int32",
20
+ "formattedType" : "MultiArray (Int32 1)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1]",
23
+ "name" : "mel_length",
24
+ "type" : "MultiArray"
25
+ }
26
+ ],
27
+ "storagePrecision" : "Int8",
28
+ "modelParameters" : [
29
+
30
+ ],
31
+ "author" : "Fluid Inference",
32
+ "specificationVersion" : 8,
33
+ "mlProgramOperationTypeHistogram" : {
34
+ "Ios17.reshape" : 2,
35
+ "Ios17.matmul" : 1,
36
+ "Select" : 3,
37
+ "Ios17.expandDims" : 8,
38
+ "Ios17.add" : 4,
39
+ "Tile" : 1,
40
+ "Ios17.sliceByIndex" : 3,
41
+ "Ios16.reduceSum" : 4,
42
+ "Pad" : 1,
43
+ "Ios17.log" : 1,
44
+ "Ios16.constexprAffineDequantize" : 4,
45
+ "Ios17.less" : 1,
46
+ "Ios17.sub" : 4,
47
+ "Ios17.conv" : 2,
48
+ "Ios17.pow" : 2,
49
+ "Ios17.cast" : 5,
50
+ "Stack" : 1,
51
+ "Ios17.concat" : 1,
52
+ "Ios17.floorDiv" : 1,
53
+ "Ios17.realDiv" : 3,
54
+ "Ios17.sqrt" : 1,
55
+ "Ios17.greaterEqual" : 1,
56
+ "Ios17.mul" : 1
57
+ },
58
+ "computePrecision" : "Mixed (Float16, Float32, Int32)",
59
+ "isUpdatable" : "0",
60
+ "stateSchema" : [
61
+
62
+ ],
63
+ "availability" : {
64
+ "macOS" : "14.0",
65
+ "tvOS" : "17.0",
66
+ "visionOS" : "1.0",
67
+ "watchOS" : "10.0",
68
+ "iOS" : "17.0",
69
+ "macCatalyst" : "17.0"
70
+ },
71
+ "modelType" : {
72
+ "name" : "MLModelType_mlProgram"
73
+ },
74
+ "inputSchema" : [
75
+ {
76
+ "hasShapeFlexibility" : "0",
77
+ "isOptional" : "0",
78
+ "dataType" : "Float32",
79
+ "formattedType" : "MultiArray (Float32 1 × 240000)",
80
+ "shortDescription" : "",
81
+ "shape" : "[1, 240000]",
82
+ "name" : "audio_signal",
83
+ "type" : "MultiArray"
84
+ },
85
+ {
86
+ "hasShapeFlexibility" : "0",
87
+ "isOptional" : "0",
88
+ "dataType" : "Int32",
89
+ "formattedType" : "MultiArray (Int32 1)",
90
+ "shortDescription" : "",
91
+ "shape" : "[1]",
92
+ "name" : "audio_length",
93
+ "type" : "MultiArray"
94
+ }
95
+ ],
96
+ "userDefinedMetadata" : {
97
+ "com.github.apple.coremltools.conversion_date" : "2025-09-19",
98
+ "com.github.apple.coremltools.source" : "torch==2.7.0",
99
+ "com.github.apple.coremltools.version" : "9.0b1",
100
+ "com.github.apple.coremltools.source_dialect" : "TorchScript"
101
+ },
102
+ "generatedClassName" : "parakeet_preprocessor",
103
+ "method" : "predict"
104
+ }
105
+ ]
Preprocessor.mlmodelc/model.mil ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}})]
3
+ {
4
+ func main<ios17>(tensor<int32, [1]> audio_length, tensor<fp32, [1, 240000]> audio_signal) {
5
+ tensor<int32, []> var_9 = const()[name = tensor<string, []>("op_9"), val = tensor<int32, []>(1)];
6
+ tensor<int32, []> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, []>(160)];
7
+ tensor<int32, []> var_34 = const()[name = tensor<string, []>("op_34"), val = tensor<int32, []>(512)];
8
+ tensor<int32, [1]> var_35 = add(x = audio_length, y = var_34)[name = tensor<string, []>("op_35")];
9
+ tensor<int32, []> var_36 = const()[name = tensor<string, []>("op_36"), val = tensor<int32, []>(512)];
10
+ tensor<int32, [1]> var_37 = sub(x = var_35, y = var_36)[name = tensor<string, []>("op_37")];
11
+ tensor<int32, [1]> floor_div_0 = floor_div(x = var_37, y = var_10)[name = tensor<string, []>("floor_div_0")];
12
+ tensor<string, []> var_38_to_fp16_dtype_0 = const()[name = tensor<string, []>("op_38_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
13
+ tensor<fp16, []> var_39_promoted_to_fp16 = const()[name = tensor<string, []>("op_39_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+0)];
14
+ tensor<fp16, [1]> floor_div_0_to_fp16 = cast(dtype = var_38_to_fp16_dtype_0, x = floor_div_0)[name = tensor<string, []>("cast_4")];
15
+ tensor<fp16, [1]> seq_len_1_cast_fp16 = add(x = floor_div_0_to_fp16, y = var_39_promoted_to_fp16)[name = tensor<string, []>("seq_len_1_cast_fp16")];
16
+ tensor<string, []> seq_len_dtype_0 = const()[name = tensor<string, []>("seq_len_dtype_0"), val = tensor<string, []>("int32")];
17
+ tensor<int32, [2]> var_43_begin_0 = const()[name = tensor<string, []>("op_43_begin_0"), val = tensor<int32, [2]>([0, 0])];
18
+ tensor<int32, [2]> var_43_end_0 = const()[name = tensor<string, []>("op_43_end_0"), val = tensor<int32, [2]>([1, 1])];
19
+ tensor<bool, [2]> var_43_end_mask_0 = const()[name = tensor<string, []>("op_43_end_mask_0"), val = tensor<bool, [2]>([true, false])];
20
+ tensor<bool, [2]> var_43_squeeze_mask_0 = const()[name = tensor<string, []>("op_43_squeeze_mask_0"), val = tensor<bool, [2]>([false, true])];
21
+ tensor<string, []> audio_signal_to_fp16_dtype_0 = const()[name = tensor<string, []>("audio_signal_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
22
+ tensor<fp16, [1, 240000]> audio_signal_to_fp16 = cast(dtype = audio_signal_to_fp16_dtype_0, x = audio_signal)[name = tensor<string, []>("cast_3")];
23
+ tensor<fp16, [1]> var_43_cast_fp16 = slice_by_index(begin = var_43_begin_0, end = var_43_end_0, end_mask = var_43_end_mask_0, squeeze_mask = var_43_squeeze_mask_0, x = audio_signal_to_fp16)[name = tensor<string, []>("op_43_cast_fp16")];
24
+ tensor<int32, [1]> var_44_axes_0 = const()[name = tensor<string, []>("op_44_axes_0"), val = tensor<int32, [1]>([1])];
25
+ tensor<fp16, [1, 1]> var_44_cast_fp16 = expand_dims(axes = var_44_axes_0, x = var_43_cast_fp16)[name = tensor<string, []>("op_44_cast_fp16")];
26
+ tensor<int32, [2]> var_46_begin_0 = const()[name = tensor<string, []>("op_46_begin_0"), val = tensor<int32, [2]>([0, 1])];
27
+ tensor<int32, [2]> var_46_end_0 = const()[name = tensor<string, []>("op_46_end_0"), val = tensor<int32, [2]>([1, 240000])];
28
+ tensor<bool, [2]> var_46_end_mask_0 = const()[name = tensor<string, []>("op_46_end_mask_0"), val = tensor<bool, [2]>([true, true])];
29
+ tensor<fp16, [1, 239999]> var_46_cast_fp16 = slice_by_index(begin = var_46_begin_0, end = var_46_end_0, end_mask = var_46_end_mask_0, x = audio_signal_to_fp16)[name = tensor<string, []>("op_46_cast_fp16")];
30
+ tensor<int32, [2]> var_48_begin_0 = const()[name = tensor<string, []>("op_48_begin_0"), val = tensor<int32, [2]>([0, 0])];
31
+ tensor<int32, [2]> var_48_end_0 = const()[name = tensor<string, []>("op_48_end_0"), val = tensor<int32, [2]>([1, 239999])];
32
+ tensor<bool, [2]> var_48_end_mask_0 = const()[name = tensor<string, []>("op_48_end_mask_0"), val = tensor<bool, [2]>([true, false])];
33
+ tensor<fp16, [1, 239999]> var_48_cast_fp16 = slice_by_index(begin = var_48_begin_0, end = var_48_end_0, end_mask = var_48_end_mask_0, x = audio_signal_to_fp16)[name = tensor<string, []>("op_48_cast_fp16")];
34
+ tensor<fp16, []> var_49_to_fp16 = const()[name = tensor<string, []>("op_49_to_fp16"), val = tensor<fp16, []>(0x1.f0cp-1)];
35
+ tensor<fp16, [1, 239999]> var_50_cast_fp16 = mul(x = var_48_cast_fp16, y = var_49_to_fp16)[name = tensor<string, []>("op_50_cast_fp16")];
36
+ tensor<fp16, [1, 239999]> var_51_cast_fp16 = sub(x = var_46_cast_fp16, y = var_50_cast_fp16)[name = tensor<string, []>("op_51_cast_fp16")];
37
+ tensor<bool, []> input_1_interleave_0 = const()[name = tensor<string, []>("input_1_interleave_0"), val = tensor<bool, []>(false)];
38
+ tensor<fp16, [1, 240000]> input_1_cast_fp16 = concat(axis = var_9, interleave = input_1_interleave_0, values = (var_44_cast_fp16, var_51_cast_fp16))[name = tensor<string, []>("input_1_cast_fp16")];
39
+ tensor<int32, [3]> var_57 = const()[name = tensor<string, []>("op_57"), val = tensor<int32, [3]>([1, 1, 240000])];
40
+ tensor<fp16, [1, 1, 240000]> input_3_cast_fp16 = reshape(shape = var_57, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
41
+ tensor<int32, [6]> input_5_pad_0 = const()[name = tensor<string, []>("input_5_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 256, 256])];
42
+ tensor<string, []> input_5_mode_0 = const()[name = tensor<string, []>("input_5_mode_0"), val = tensor<string, []>("reflect")];
43
+ tensor<fp16, []> const_3_to_fp16 = const()[name = tensor<string, []>("const_3_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
44
+ tensor<fp16, [1, 1, 240512]> input_5_cast_fp16 = pad(constant_val = const_3_to_fp16, mode = input_5_mode_0, pad = input_5_pad_0, x = input_3_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
45
+ tensor<int32, [2]> var_63 = const()[name = tensor<string, []>("op_63"), val = tensor<int32, [2]>([1, 240512])];
46
+ tensor<fp16, [1, 240512]> input_cast_fp16 = reshape(shape = var_63, x = input_5_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
47
+ tensor<int32, [1]> expand_dims_5 = const()[name = tensor<string, []>("expand_dims_5"), val = tensor<int32, [1]>([160])];
48
+ tensor<int32, [1]> expand_dims_6_axes_0 = const()[name = tensor<string, []>("expand_dims_6_axes_0"), val = tensor<int32, [1]>([1])];
49
+ tensor<fp16, [1, 1, 240512]> expand_dims_6_cast_fp16 = expand_dims(axes = expand_dims_6_axes_0, x = input_cast_fp16)[name = tensor<string, []>("expand_dims_6_cast_fp16")];
50
+ tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
51
+ tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
52
+ tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
53
+ tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
54
+ tensor<fp16, [257, 1, 512]> expand_dims_3_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor<int32, []>(0), name = tensor<string, []>("expand_dims_3_to_fp16_quantized"), quantized_data = tensor<int8, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64))), scale = tensor<fp16, [257]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(132096))), zero_point = tensor<int8, [257]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(131712)))];
55
+ tensor<fp16, [1, 257, 1501]> conv_0_cast_fp16 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_5, weight = expand_dims_3_to_fp16_quantized, x = expand_dims_6_cast_fp16)[name = tensor<string, []>("conv_0_cast_fp16")];
56
+ tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
57
+ tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
58
+ tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
59
+ tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
60
+ tensor<fp16, [257, 1, 512]> expand_dims_4_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor<int32, []>(0), name = tensor<string, []>("expand_dims_4_to_fp16_quantized"), quantized_data = tensor<int8, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(132736))), scale = tensor<fp16, [257]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(264768))), zero_point = tensor<int8, [257]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(264384)))];
61
+ tensor<fp16, [1, 257, 1501]> conv_1_cast_fp16 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_5, weight = expand_dims_4_to_fp16_quantized, x = expand_dims_6_cast_fp16)[name = tensor<string, []>("conv_1_cast_fp16")];
62
+ tensor<int32, []> stack_0_axis_0 = const()[name = tensor<string, []>("stack_0_axis_0"), val = tensor<int32, []>(-1)];
63
+ tensor<fp16, [1, 257, 1501, 2]> stack_0_cast_fp16 = stack(axis = stack_0_axis_0, values = (conv_0_cast_fp16, conv_1_cast_fp16))[name = tensor<string, []>("stack_0_cast_fp16")];
64
+ tensor<fp16, []> var_17_promoted_to_fp16 = const()[name = tensor<string, []>("op_17_promoted_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
65
+ tensor<fp16, [1, 257, 1501, 2]> var_67_cast_fp16 = pow(x = stack_0_cast_fp16, y = var_17_promoted_to_fp16)[name = tensor<string, []>("op_67_cast_fp16")];
66
+ tensor<int32, [1]> var_69_axes_0 = const()[name = tensor<string, []>("op_69_axes_0"), val = tensor<int32, [1]>([-1])];
67
+ tensor<bool, []> var_69_keep_dims_0 = const()[name = tensor<string, []>("op_69_keep_dims_0"), val = tensor<bool, []>(false)];
68
+ tensor<fp16, [1, 257, 1501]> var_69_cast_fp16 = reduce_sum(axes = var_69_axes_0, keep_dims = var_69_keep_dims_0, x = var_67_cast_fp16)[name = tensor<string, []>("op_69_cast_fp16")];
69
+ tensor<bool, []> x_11_transpose_x_0 = const()[name = tensor<string, []>("x_11_transpose_x_0"), val = tensor<bool, []>(false)];
70
+ tensor<bool, []> x_11_transpose_y_0 = const()[name = tensor<string, []>("x_11_transpose_y_0"), val = tensor<bool, []>(false)];
71
+ tensor<fp16, [1, 128, 257]> const_6_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor<int32, []>(1), name = tensor<string, []>("const_6_to_fp16_quantized"), quantized_data = tensor<int8, [1, 128, 257]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(265408))), scale = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(298560))), zero_point = tensor<int8, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(298368)))];
72
+ tensor<fp16, [1, 128, 1501]> x_11_cast_fp16 = matmul(transpose_x = x_11_transpose_x_0, transpose_y = x_11_transpose_y_0, x = const_6_to_fp16_quantized, y = var_69_cast_fp16)[name = tensor<string, []>("x_11_cast_fp16")];
73
+ tensor<fp16, []> var_76_to_fp16 = const()[name = tensor<string, []>("op_76_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
74
+ tensor<fp16, [1, 128, 1501]> var_77_cast_fp16 = add(x = x_11_cast_fp16, y = var_76_to_fp16)[name = tensor<string, []>("op_77_cast_fp16")];
75
+ tensor<fp32, []> x_13_epsilon_0 = const()[name = tensor<string, []>("x_13_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
76
+ tensor<fp16, [1, 128, 1501]> x_13_cast_fp16 = log(epsilon = x_13_epsilon_0, x = var_77_cast_fp16)[name = tensor<string, []>("x_13_cast_fp16")];
77
+ tensor<int32, [1, 1501]> var_82 = const()[name = tensor<string, []>("op_82"), val = tensor<int32, [1, 1501]>([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1367, 1368, 1369, 1370, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1451, 1452, 1453, 1454, 1455, 1456, 1457, 1458, 1459, 1460, 1461, 1462, 1463, 1464, 1465, 1466, 1467, 1468, 1469, 1470, 1471, 1472, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1481, 1482, 1483, 1484, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1492, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500]])];
78
+ tensor<int32, [1]> var_85_axes_0 = const()[name = tensor<string, []>("op_85_axes_0"), val = tensor<int32, [1]>([1])];
79
+ tensor<int32, [1]> mel_length = cast(dtype = seq_len_dtype_0, x = seq_len_1_cast_fp16)[name = tensor<string, []>("cast_2")];
80
+ tensor<int32, [1, 1]> var_85 = expand_dims(axes = var_85_axes_0, x = mel_length)[name = tensor<string, []>("op_85")];
81
+ tensor<bool, [1, 1501]> valid_mask = less(x = var_82, y = var_85)[name = tensor<string, []>("valid_mask")];
82
+ tensor<int32, [1]> var_87_axes_0 = const()[name = tensor<string, []>("op_87_axes_0"), val = tensor<int32, [1]>([1])];
83
+ tensor<bool, [1, 1, 1501]> var_87 = expand_dims(axes = var_87_axes_0, x = valid_mask)[name = tensor<string, []>("op_87")];
84
+ tensor<int32, [3]> var_87_after_broadcast_reps_0 = const()[name = tensor<string, []>("op_87_after_broadcast_reps_0"), val = tensor<int32, [3]>([1, 128, 1])];
85
+ tensor<bool, [1, 128, 1501]> var_87_after_broadcast = tile(reps = var_87_after_broadcast_reps_0, x = var_87)[name = tensor<string, []>("op_87_after_broadcast")];
86
+ tensor<fp16, [1, 128, 1501]> op_24_after_broadcast_to_fp16_quantized = constexpr_affine_dequantize()[axis = tensor<int32, []>(0), name = tensor<string, []>("op_24_after_broadcast_to_fp16_quantized"), quantized_data = tensor<int8, [1, 128, 1501]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(298880))), scale = tensor<fp16, []>(0x0p+0), zero_point = tensor<int8, []>(0)];
87
+ tensor<fp16, [1, 128, 1501]> var_88_cast_fp16 = select(a = x_13_cast_fp16, b = op_24_after_broadcast_to_fp16_quantized, cond = var_87_after_broadcast)[name = tensor<string, []>("op_88_cast_fp16")];
88
+ tensor<int32, [1]> x_mean_numerator_axes_0 = const()[name = tensor<string, []>("x_mean_numerator_axes_0"), val = tensor<int32, [1]>([2])];
89
+ tensor<bool, []> x_mean_numerator_keep_dims_0 = const()[name = tensor<string, []>("x_mean_numerator_keep_dims_0"), val = tensor<bool, []>(false)];
90
+ tensor<fp16, [1, 128]> x_mean_numerator_cast_fp16 = reduce_sum(axes = x_mean_numerator_axes_0, keep_dims = x_mean_numerator_keep_dims_0, x = var_88_cast_fp16)[name = tensor<string, []>("x_mean_numerator_cast_fp16")];
91
+ tensor<int32, [1]> x_mean_denominator_axes_0 = const()[name = tensor<string, []>("x_mean_denominator_axes_0"), val = tensor<int32, [1]>([1])];
92
+ tensor<bool, []> x_mean_denominator_keep_dims_0 = const()[name = tensor<string, []>("x_mean_denominator_keep_dims_0"), val = tensor<bool, []>(false)];
93
+ tensor<string, []> cast_2_to_fp16_dtype_0 = const()[name = tensor<string, []>("cast_2_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
94
+ tensor<fp16, [1, 1501]> valid_mask_to_fp16 = cast(dtype = cast_2_to_fp16_dtype_0, x = valid_mask)[name = tensor<string, []>("cast_1")];
95
+ tensor<fp16, [1]> x_mean_denominator_cast_fp16 = reduce_sum(axes = x_mean_denominator_axes_0, keep_dims = x_mean_denominator_keep_dims_0, x = valid_mask_to_fp16)[name = tensor<string, []>("x_mean_denominator_cast_fp16")];
96
+ tensor<int32, [1]> var_93_axes_0 = const()[name = tensor<string, []>("op_93_axes_0"), val = tensor<int32, [1]>([1])];
97
+ tensor<fp16, [1, 1]> var_93_cast_fp16 = expand_dims(axes = var_93_axes_0, x = x_mean_denominator_cast_fp16)[name = tensor<string, []>("op_93_cast_fp16")];
98
+ tensor<fp16, [1, 128]> x_mean_cast_fp16 = real_div(x = x_mean_numerator_cast_fp16, y = var_93_cast_fp16)[name = tensor<string, []>("x_mean_cast_fp16")];
99
+ tensor<int32, [1]> var_96_axes_0 = const()[name = tensor<string, []>("op_96_axes_0"), val = tensor<int32, [1]>([2])];
100
+ tensor<fp16, [1, 128, 1]> var_96_cast_fp16 = expand_dims(axes = var_96_axes_0, x = x_mean_cast_fp16)[name = tensor<string, []>("op_96_cast_fp16")];
101
+ tensor<fp16, [1, 128, 1501]> var_97_cast_fp16 = sub(x = x_13_cast_fp16, y = var_96_cast_fp16)[name = tensor<string, []>("op_97_cast_fp16")];
102
+ tensor<fp16, [1, 128, 1501]> var_98_cast_fp16 = select(a = var_97_cast_fp16, b = op_24_after_broadcast_to_fp16_quantized, cond = var_87_after_broadcast)[name = tensor<string, []>("op_98_cast_fp16")];
103
+ tensor<fp16, []> var_17_promoted_1_to_fp16 = const()[name = tensor<string, []>("op_17_promoted_1_to_fp16"), val = tensor<fp16, []>(0x1p+1)];
104
+ tensor<fp16, [1, 128, 1501]> var_99_cast_fp16 = pow(x = var_98_cast_fp16, y = var_17_promoted_1_to_fp16)[name = tensor<string, []>("op_99_cast_fp16")];
105
+ tensor<int32, [1]> var_101_axes_0 = const()[name = tensor<string, []>("op_101_axes_0"), val = tensor<int32, [1]>([2])];
106
+ tensor<bool, []> var_101_keep_dims_0 = const()[name = tensor<string, []>("op_101_keep_dims_0"), val = tensor<bool, []>(false)];
107
+ tensor<fp16, [1, 128]> var_101_cast_fp16 = reduce_sum(axes = var_101_axes_0, keep_dims = var_101_keep_dims_0, x = var_99_cast_fp16)[name = tensor<string, []>("op_101_cast_fp16")];
108
+ tensor<fp16, []> var_103_to_fp16 = const()[name = tensor<string, []>("op_103_to_fp16"), val = tensor<fp16, []>(0x1p+0)];
109
+ tensor<fp16, [1, 1]> var_104_cast_fp16 = sub(x = var_93_cast_fp16, y = var_103_to_fp16)[name = tensor<string, []>("op_104_cast_fp16")];
110
+ tensor<fp16, [1, 128]> var_105_cast_fp16 = real_div(x = var_101_cast_fp16, y = var_104_cast_fp16)[name = tensor<string, []>("op_105_cast_fp16")];
111
+ tensor<fp16, [1, 128]> x_std_1_cast_fp16 = sqrt(x = var_105_cast_fp16)[name = tensor<string, []>("x_std_1_cast_fp16")];
112
+ tensor<fp16, []> var_25_to_fp16 = const()[name = tensor<string, []>("op_25_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
113
+ tensor<fp16, [1, 128]> x_std_cast_fp16 = add(x = x_std_1_cast_fp16, y = var_25_to_fp16)[name = tensor<string, []>("x_std_cast_fp16")];
114
+ tensor<int32, [1]> var_110_axes_0 = const()[name = tensor<string, []>("op_110_axes_0"), val = tensor<int32, [1]>([2])];
115
+ tensor<fp16, [1, 128, 1]> var_110_cast_fp16 = expand_dims(axes = var_110_axes_0, x = x_std_cast_fp16)[name = tensor<string, []>("op_110_cast_fp16")];
116
+ tensor<fp16, [1, 128, 1501]> x_cast_fp16 = real_div(x = var_97_cast_fp16, y = var_110_cast_fp16)[name = tensor<string, []>("x_cast_fp16")];
117
+ tensor<bool, [1, 1501]> mask = greater_equal(x = var_82, y = var_85)[name = tensor<string, []>("mask")];
118
+ tensor<int32, [1]> var_119_axes_0 = const()[name = tensor<string, []>("op_119_axes_0"), val = tensor<int32, [1]>([1])];
119
+ tensor<bool, [1, 1, 1501]> var_119 = expand_dims(axes = var_119_axes_0, x = mask)[name = tensor<string, []>("op_119")];
120
+ tensor<fp16, []> var_24_to_fp16 = const()[name = tensor<string, []>("op_24_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
121
+ tensor<fp16, [1, 128, 1501]> processed_signal_cast_fp16 = select(a = var_24_to_fp16, b = x_cast_fp16, cond = var_119)[name = tensor<string, []>("processed_signal_cast_fp16")];
122
+ tensor<string, []> processed_signal_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("processed_signal_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
123
+ tensor<fp32, [1, 128, 1501]> mel = cast(dtype = processed_signal_cast_fp16_to_fp32_dtype_0, x = processed_signal_cast_fp16)[name = tensor<string, []>("cast_0")];
124
+ } -> (mel, mel_length);
125
+ }
Preprocessor.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:129b76e3aeafa8afa3ea76d995b964b145fe83700d579f6ff42c4c38fa0968ea
3
+ size 491072
README.md CHANGED
@@ -1,3 +1,146 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ track_downloads: true
4
+ language:
5
+ - en
6
+ - es
7
+ - fr
8
+ - de
9
+ - bg
10
+ - hr
11
+ - cs
12
+ - da
13
+ - nl
14
+ - et
15
+ - fi
16
+ - el
17
+ - hu
18
+ - it
19
+ - lv
20
+ - lt
21
+ - mt
22
+ - pl
23
+ - pt
24
+ - ro
25
+ - sk
26
+ - sl
27
+ - sv
28
+ - ru
29
+ - uk
30
+ pipeline_tag: automatic-speech-recognition
31
+ library_name: nemo
32
+ datasets:
33
+ - nvidia/Granary
34
+ - nemo/asr-set-3.0
35
+ thumbnail: null
36
+ tags:
37
+ - automatic-speech-recognition
38
+ - speech
39
+ - audio
40
+ - Transducer
41
+ - TDT
42
+ - FastConformer
43
+ - Conformer
44
+ - pytorch
45
+ - NeMo
46
+ - hf-asr-leaderboard
47
+ widget:
48
+ - example_title: Librispeech sample 1
49
+ src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
50
+ - example_title: Librispeech sample 2
51
+ src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
52
+ base_model:
53
+ - nvidia/parakeet-tdt-0.6b-v3
54
+ ---
55
+
56
+ # **<span style="color:#5DAF8D"> 🧃 parakeet-tdt-0.6b-v3: Multilingual Speech-to-Text Model CoreML </span>**
57
+
58
+ <style>
59
+ img {
60
+ display: inline;
61
+ }
62
+ </style>
63
+
64
+ [![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--TDT-blue#model-badge)](#model-architecture)
65
+ | [![Model size](https://img.shields.io/badge/Params-0.6B-green#model-badge)](#model-architecture)
66
+ | [![Language](https://img.shields.io/badge/Language-EU_Languages-blue#model-badge)](#datasets)
67
+ | [![Discord](https://img.shields.io/badge/Discord-Join%20Chat-7289da.svg)](https://discord.gg/WNsvaCtmDe)
68
+ | [![GitHub Repo stars](https://img.shields.io/github/stars/FluidInference/FluidAudio?style=flat&logo=github)](https://github.com/FluidInference/FluidAudio)
69
+
70
+ On‑device multilingual ASR model converted to Core ML for Apple platforms. This model powers FluidAudio’s batch ASR and is the same model used in our backend. It supports 25 European languages and is optimized for low‑latency, private, offline transcription.
71
+
72
+
73
+ For conversion script and benchmarks:
74
+ https://github.com/FluidInference/mobius/tree/main/models/tts/parakeet-tdt-v3-0.6b/coreml
75
+
76
+ ## Highlights
77
+
78
+ - **Core ML**: Runs fully on‑device (ANE/CPU) on Apple Silicon.
79
+ - **Multilingual**: 25 European languages; see model usage in FluidAudio for examples.
80
+ - **Performance**: ~110× RTF on M4 Pro for batch ASR (1 min audio ≈ 0.5 s).
81
+ - **Privacy**: No network calls required once models are downloaded.
82
+
83
+ ## Intended Use
84
+
85
+ - **Batch transcription** of complete audio files on macOS/iOS.
86
+ - **Local dictation** and note‑taking apps where privacy and latency matter.
87
+ - **Embedded ASR** in production apps via the FluidAudio Swift framework.
88
+
89
+ ## Supported Platforms
90
+
91
+ - macOS 14+ (Apple Silicon recommended)
92
+ - iOS 17+
93
+
94
+ ## Model Details
95
+
96
+ - **Architecture**: Parakeet TDT v3 (Token Duration Transducer, 0.6B parameters)
97
+ - **Input audio**: 16 kHz, mono, Float32 PCM in range [-1, 1]
98
+ - **Languages**: 25 European languages (multilingual)
99
+ - **Precision**: Mixed precision optimized for Core ML execution (ANE/CPU)
100
+
101
+ ## Performance
102
+
103
+ - **Real‑time factor (RTF)**: ~110× on M4 Pro in batch mode
104
+ - Throughput and latency vary with device, input duration, and compute units (ANE/CPU).
105
+
106
+ ## Usage
107
+
108
+ For quickest integration, use the FluidAudio Swift framework which handles model loading, audio preprocessing, and decoding.
109
+
110
+ ### Swift (FluidAudio)
111
+
112
+ ```swift
113
+ import AVFoundation
114
+ import FluidAudio
115
+
116
+ Task {
117
+ // Download and load ASR models (first run only)
118
+ let models = try await AsrModels.downloadAndLoad()
119
+
120
+ // Initialize ASR manager with default config
121
+ let asr = AsrManager(config: .default)
122
+ try await asr.initialize(models: models)
123
+
124
+ // Load audio and transcribe
125
+ let samples = try await AudioProcessor.loadAudioFile(path: "path/to/audio.wav")
126
+ let result = try await asr.transcribe(samples, source: .system)
127
+ print(result.text)
128
+
129
+ asr.cleanup()
130
+ }
131
+ ```
132
+
133
+ For more examples (including CLI usage and benchmarking), see the FluidAudio repository: https://github.com/FluidInference/FluidAudio
134
+
135
+ ## Files
136
+
137
+ - Core ML model artifacts suitable for use via the FluidAudio APIs (preferred) or directly with Core ML.
138
+ - Tokenizer and configuration assets are included/managed by FluidAudio’s loaders.
139
+
140
+ ## Limitations
141
+
142
+ - Primary coverage is European languages; performance may degrade for non‑European languages.
143
+
144
+ ## License
145
+
146
+ Apache 2.0. See the FluidAudio repository for details and usage guidance.
RNNTJoint.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6123e6464c990b52c62d86bd580a11c746cfcb5a01ae51b9ecbe92cfcef68852
3
+ size 243
RNNTJoint.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f1dc6e96c2f63c8636f5a09968abd2bff0ded029e5a205886c10228421a029b
3
+ size 394
RNNTJoint.mlmodelc/metadata.json ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float32",
10
+ "formattedType" : "MultiArray (Float32)",
11
+ "shortDescription" : "",
12
+ "shape" : "[]",
13
+ "name" : "logits",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 6,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Log" : 1,
23
+ "Concat" : 1,
24
+ "Linear" : 3,
25
+ "Range1d" : 1,
26
+ "Shape" : 2,
27
+ "RealDiv" : 1,
28
+ "Relu" : 1,
29
+ "Mul" : 1,
30
+ "Cast" : 4,
31
+ "Tile" : 1,
32
+ "Add" : 1,
33
+ "ExpandDims" : 5,
34
+ "Softmax" : 1,
35
+ "Gather" : 2,
36
+ "Less" : 1
37
+ },
38
+ "computePrecision" : "Mixed (Float16, Float32, Int32)",
39
+ "isUpdatable" : "0",
40
+ "stateSchema" : [
41
+
42
+ ],
43
+ "availability" : {
44
+ "macOS" : "12.0",
45
+ "tvOS" : "15.0",
46
+ "visionOS" : "1.0",
47
+ "watchOS" : "8.0",
48
+ "iOS" : "15.0",
49
+ "macCatalyst" : "15.0"
50
+ },
51
+ "modelType" : {
52
+ "name" : "MLModelType_mlProgram"
53
+ },
54
+ "userDefinedMetadata" : {
55
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
56
+ "com.github.apple.coremltools.source" : "torch==2.5.0",
57
+ "com.github.apple.coremltools.version" : "8.3.0"
58
+ },
59
+ "inputSchema" : [
60
+ {
61
+ "dataType" : "Float32",
62
+ "hasShapeFlexibility" : "1",
63
+ "isOptional" : "0",
64
+ "shapeFlexibility" : "1...100 × 1...1025 × 1024",
65
+ "shapeRange" : "[[1, 100], [1, 1025], [1024, 1024]]",
66
+ "formattedType" : "MultiArray (Float32 1 × 1 × 1024)",
67
+ "type" : "MultiArray",
68
+ "shape" : "[1, 1, 1024]",
69
+ "name" : "encoder_outputs",
70
+ "shortDescription" : ""
71
+ },
72
+ {
73
+ "dataType" : "Float32",
74
+ "hasShapeFlexibility" : "1",
75
+ "isOptional" : "0",
76
+ "shapeFlexibility" : "1...100 × 1...1025 × 640",
77
+ "shapeRange" : "[[1, 100], [1, 1025], [640, 640]]",
78
+ "formattedType" : "MultiArray (Float32 1 × 1 × 640)",
79
+ "type" : "MultiArray",
80
+ "shape" : "[1, 1, 640]",
81
+ "name" : "decoder_outputs",
82
+ "shortDescription" : ""
83
+ },
84
+ {
85
+ "dataType" : "Int32",
86
+ "hasShapeFlexibility" : "1",
87
+ "isOptional" : "0",
88
+ "shapeFlexibility" : "1...100",
89
+ "shapeRange" : "[[1, 100]]",
90
+ "formattedType" : "MultiArray (Int32 1)",
91
+ "type" : "MultiArray",
92
+ "shape" : "[1]",
93
+ "name" : "encoder_length",
94
+ "shortDescription" : ""
95
+ }
96
+ ],
97
+ "generatedClassName" : "RNNTJointWithMask",
98
+ "method" : "predict"
99
+ }
100
+ ]
RNNTJoint.mlmodelc/model.mil ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3405.2.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
3
+ {
4
+ func main<ios15>(tensor<fp32, [?, ?, ?]> decoder_outputs, tensor<fp32, [?, ?, ?]> encoder_outputs) [FlexibleShapeInformation = tuple<tuple<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>, tuple<tensor<string, []>, dict<tensor<string, []>, list<tensor<int32, [2]>, ?>>>>((("DefaultShapes", {{"decoder_outputs", [1, 1, 1]}, {"encoder_outputs", [1, 1, 1]}}), ("RangeDims", {{"decoder_outputs", [[1, 100], [1, 1025], [1, 640]]}, {"encoder_outputs", [[1, 100], [1, 1025], [1, 1024]]}})))] {
5
+ tensor<string, []> encoder_outputs_to_fp16_dtype_0 = const()[name = tensor<string, []>("encoder_outputs_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
6
+ tensor<fp16, [640, 1024]> joint_enc_weight_to_fp16 = const()[name = tensor<string, []>("joint_enc_weight_to_fp16"), val = tensor<fp16, [640, 1024]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
7
+ tensor<fp16, [640]> joint_enc_bias_to_fp16 = const()[name = tensor<string, []>("joint_enc_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1310848)))];
8
+ tensor<fp16, [?, ?, ?]> encoder_outputs_to_fp16 = cast(dtype = encoder_outputs_to_fp16_dtype_0, x = encoder_outputs)[name = tensor<string, []>("cast_2")];
9
+ tensor<fp16, [?, ?, 640]> linear_0_cast_fp16 = linear(bias = joint_enc_bias_to_fp16, weight = joint_enc_weight_to_fp16, x = encoder_outputs_to_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
10
+ tensor<string, []> decoder_outputs_to_fp16_dtype_0 = const()[name = tensor<string, []>("decoder_outputs_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
11
+ tensor<fp16, [640, 640]> joint_pred_weight_to_fp16 = const()[name = tensor<string, []>("joint_pred_weight_to_fp16"), val = tensor<fp16, [640, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1312192)))];
12
+ tensor<fp16, [640]> joint_pred_bias_to_fp16 = const()[name = tensor<string, []>("joint_pred_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2131456)))];
13
+ tensor<fp16, [?, ?, ?]> decoder_outputs_to_fp16 = cast(dtype = decoder_outputs_to_fp16_dtype_0, x = decoder_outputs)[name = tensor<string, []>("cast_1")];
14
+ tensor<fp16, [?, ?, 640]> linear_1_cast_fp16 = linear(bias = joint_pred_bias_to_fp16, weight = joint_pred_weight_to_fp16, x = decoder_outputs_to_fp16)[name = tensor<string, []>("linear_1_cast_fp16")];
15
+ tensor<int32, [1]> f_axes_0 = const()[name = tensor<string, []>("f_axes_0"), val = tensor<int32, [1]>([2])];
16
+ tensor<fp16, [?, ?, 1, 640]> f_cast_fp16 = expand_dims(axes = f_axes_0, x = linear_0_cast_fp16)[name = tensor<string, []>("f_cast_fp16")];
17
+ tensor<int32, [1]> g_axes_0 = const()[name = tensor<string, []>("g_axes_0"), val = tensor<int32, [1]>([1])];
18
+ tensor<fp16, [?, 1, ?, 640]> g_cast_fp16 = expand_dims(axes = g_axes_0, x = linear_1_cast_fp16)[name = tensor<string, []>("g_cast_fp16")];
19
+ tensor<fp16, [?, ?, ?, 640]> input_1_cast_fp16 = add(x = f_cast_fp16, y = g_cast_fp16)[name = tensor<string, []>("input_1_cast_fp16")];
20
+ tensor<fp16, [?, ?, ?, 640]> input_3_cast_fp16 = relu(x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
21
+ tensor<fp16, [8198, 640]> joint_joint_net_2_weight_to_fp16 = const()[name = tensor<string, []>("joint_joint_net_2_weight_to_fp16"), val = tensor<fp16, [8198, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2132800)))];
22
+ tensor<fp16, [8198]> joint_joint_net_2_bias_to_fp16 = const()[name = tensor<string, []>("joint_joint_net_2_bias_to_fp16"), val = tensor<fp16, [8198]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12626304)))];
23
+ tensor<fp16, [?, ?, ?, 8198]> linear_2_cast_fp16 = linear(bias = joint_joint_net_2_bias_to_fp16, weight = joint_joint_net_2_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("linear_2_cast_fp16")];
24
+ tensor<int32, []> var_29 = const()[name = tensor<string, []>("op_29"), val = tensor<int32, []>(-1)];
25
+ tensor<fp16, [?, ?, ?, 8198]> var_31_softmax_cast_fp16 = softmax(axis = var_29, x = linear_2_cast_fp16)[name = tensor<string, []>("op_31_softmax_cast_fp16")];
26
+ tensor<fp16, []> var_31_epsilon_0_to_fp16 = const()[name = tensor<string, []>("op_31_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
27
+ tensor<fp16, [?, ?, ?, 8198]> var_31_cast_fp16 = log(epsilon = var_31_epsilon_0_to_fp16, x = var_31_softmax_cast_fp16)[name = tensor<string, []>("op_31_cast_fp16")];
28
+ tensor<string, []> var_31_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_31_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
29
+ tensor<fp32, [?, ?, ?, 8198]> logits = cast(dtype = var_31_cast_fp16_to_fp32_dtype_0, x = var_31_cast_fp16)[name = tensor<string, []>("cast_0")];
30
+ } -> (logits);
31
+ }
RNNTJoint.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e0e63d840032f7f07ddb1d64446051166281e5491bf22da8a945c41f6eedb3e
3
+ size 12642764
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
mlpackages/.DS_Store ADDED
Binary file (6.15 kB). View file
 
mlpackages/Decoder.mlpackage/Data/com.apple.CoreML/model.mlmodel ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bfdcef9fb1b46a1ec2f3c1895c74ed90644a69105efda370e412a522bd5b353
3
+ size 11672
mlpackages/Decoder.mlpackage/Data/com.apple.CoreML/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48adf0f0d47c406c8253d4f7fef967436a39da14f5a65e66d5a4b407be355d41
3
+ size 23604992
mlpackages/Decoder.mlpackage/Manifest.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "fileFormatVersion": "1.0.0",
3
+ "itemInfoEntries": {
4
+ "466FE08B-3D1B-4E1F-9B79-C18F489CA87E": {
5
+ "author": "com.apple.CoreML",
6
+ "description": "CoreML Model Specification",
7
+ "name": "model.mlmodel",
8
+ "path": "com.apple.CoreML/model.mlmodel"
9
+ },
10
+ "D7C703DA-6632-4032-845C-478F29130C0D": {
11
+ "author": "com.apple.CoreML",
12
+ "description": "CoreML Model Weights",
13
+ "name": "weights",
14
+ "path": "com.apple.CoreML/weights"
15
+ }
16
+ },
17
+ "rootModelIdentifier": "466FE08B-3D1B-4E1F-9B79-C18F489CA87E"
18
+ }