Commit
·
9fefb4e
1
Parent(s):
5aca23c
Update README.md
Browse files
README.md
CHANGED
|
@@ -22,7 +22,7 @@ quantized_by: alvarobartt
|
|
| 22 |
|
| 23 |
# Model Card for LINCE-ZERO-7B-GGUF
|
| 24 |
|
| 25 |
-
[LINCE-ZERO]https://huggingface.co/clibrain/lince-zero) is a fine-tuned LLM for instruction following of [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b). The team/org leading the fine-tune is [Clibrain](https://huggingface.co/clibrain), and the datasets used are both [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets, both translated into Spanish and augmented to 80k examples (as Clibrain claims in its [model card](https://huggingface.co/clibrain/lince-zero#model-card-for-lince-zero)).
|
| 26 |
|
| 27 |
This model contains the quantized variants using the GGUF format, introduced by the [llama.cpp](https://github.com/ggerganov/llama.cpp) team.
|
| 28 |
|
|
@@ -33,7 +33,7 @@ Some curious may ask, why don't you just use [TheBloke/lince-zero-GGUF](https://
|
|
| 33 |
### Model Description
|
| 34 |
|
| 35 |
- **Model type:** Falcon
|
| 36 |
-
- **
|
| 37 |
- **Created by**: [TIIUAE](https://huggingface.co/tiiuae)
|
| 38 |
- **Fine-tuned by:** [Clibrain](https://huggingface.co/clibrain)
|
| 39 |
- **Quantized by:** [alvarobartt](https://huggingface.co/alvarobartt)
|
|
@@ -52,7 +52,8 @@ Some curious may ask, why don't you just use [TheBloke/lince-zero-GGUF](https://
|
|
| 52 |
| [lince-zero-7b-q4_k_m.gguf](https://huggingface.co/alvarobartt/lince-zero-7b-GGUF/blob/main/lince-zero-7b-q4_k_m.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
|
| 53 |
| [lince-zero-7b-q5_k_s.gguf](https://huggingface.co/alvarobartt/lince-zero-7b-GGUF/blob/main/lince-zero-7b-q5_k_s.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
|
| 54 |
| [lince-zero-7b-q5_k_m.gguf](https://huggingface.co/alvarobartt/lince-zero-7b-GGUF/blob/main/lince-zero-7b-q5_k_m.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
|
| 55 |
-
|
|
|
|
| 56 |
|
| 57 |
## Uses
|
| 58 |
|
|
|
|
| 22 |
|
| 23 |
# Model Card for LINCE-ZERO-7B-GGUF
|
| 24 |
|
| 25 |
+
[LINCE-ZERO](https://huggingface.co/clibrain/lince-zero) is a fine-tuned LLM for instruction following of [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b). The team/org leading the fine-tune is [Clibrain](https://huggingface.co/clibrain), and the datasets used are both [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets, both translated into Spanish and augmented to 80k examples (as Clibrain claims in its [model card](https://huggingface.co/clibrain/lince-zero#model-card-for-lince-zero)).
|
| 26 |
|
| 27 |
This model contains the quantized variants using the GGUF format, introduced by the [llama.cpp](https://github.com/ggerganov/llama.cpp) team.
|
| 28 |
|
|
|
|
| 33 |
### Model Description
|
| 34 |
|
| 35 |
- **Model type:** Falcon
|
| 36 |
+
- **Fine-tuned from model:** [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b)
|
| 37 |
- **Created by**: [TIIUAE](https://huggingface.co/tiiuae)
|
| 38 |
- **Fine-tuned by:** [Clibrain](https://huggingface.co/clibrain)
|
| 39 |
- **Quantized by:** [alvarobartt](https://huggingface.co/alvarobartt)
|
|
|
|
| 52 |
| [lince-zero-7b-q4_k_m.gguf](https://huggingface.co/alvarobartt/lince-zero-7b-GGUF/blob/main/lince-zero-7b-q4_k_m.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
|
| 53 |
| [lince-zero-7b-q5_k_s.gguf](https://huggingface.co/alvarobartt/lince-zero-7b-GGUF/blob/main/lince-zero-7b-q5_k_s.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
|
| 54 |
| [lince-zero-7b-q5_k_m.gguf](https://huggingface.co/alvarobartt/lince-zero-7b-GGUF/blob/main/lince-zero-7b-q5_k_m.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
|
| 55 |
+
|
| 56 |
+
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
| 57 |
|
| 58 |
## Uses
|
| 59 |
|