alakxender commited on
Commit
dc53e59
·
verified ·
1 Parent(s): d5b48a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -183
README.md CHANGED
@@ -1,199 +1,72 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: mit
3
+ datasets:
4
+ - alakxender/haveeru-articles
5
+ - alakxender/dhivehi-news-corpus
6
+ - alakxender/alpaca_dhivehi
7
+ language:
8
+ - dv
9
+ metrics:
10
+ - rouge
11
+ base_model:
12
+ - google/flan-t5-base
13
  library_name: transformers
14
+ tags:
15
+ - dhivehi
16
+ - articles
17
+ - thaana
18
  ---
19
 
20
+ # Flan-T5 News Article Generator
21
 
22
+ This project fine-tunes a Flan-T5 model to generate news articles in Dhivehi language based on titles.
23
 
24
+ # Evaluation
25
 
26
+ The model was evaluated using ROUGE metrics on a validation set. Here are the final evaluation results:
27
 
28
+ - Loss: 0.154
29
+ - ROUGE-1: 0.170
30
+ - ROUGE-2: 0.135
31
+ - ROUGE-L: 0.169
32
+ - ROUGE-Lsum: 0.169
33
 
34
+ The training metrics at epoch 4.35:
35
+ - Training loss: 0.857
36
+ - Gradient norm: 0.202
37
+ - Learning rate: 0.000287
38
 
39
+ The model shows reasonable performance on the validation set with ROUGE scores indicating decent overlap between generated and reference texts. The relatively low validation loss of 0.154 compared to training loss suggests the model is generalizing well without overfitting.
40
 
41
+ # Usage
42
 
43
+ ```python
 
 
 
 
 
 
44
 
45
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
46
 
47
+ # Load your finetuned model
48
+ model = T5ForConditionalGeneration.from_pretrained("alakxender/flan-t5-corpora-mixed")
49
+ tokenizer = T5Tokenizer.from_pretrained("alakxender/flan-t5-corpora-mixed")
50
 
51
+ def generate_text(prompt, max_new_tokens=150, num_beams=1, repetition_penalty=1.2, no_repeat_ngram_size=1, do_sample=True):
52
+ inputs = tokenizer(prompt, return_tensors="pt")
53
+ outputs = model.generate(
54
+ **inputs,
55
+ max_new_tokens=max_new_tokens,
56
+ num_beams=num_beams,
57
+ repetition_penalty=repetition_penalty,
58
+ no_repeat_ngram_size=no_repeat_ngram_size,
59
+ do_sample=do_sample,
60
+ early_stopping=True # this flag is only used in beam-based generation modes. You should set `num_beams>1` or unset `early_stopping`
61
+ )
62
+ output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
63
+ # Trim to the last period
64
+ if '.' in output_text:
65
+ last_period = output_text.rfind('.')
66
+ output_text = output_text[:last_period+1]
67
+ return output_text
68
 
69
+ prompt = "ބައެއް ފިހާރަތަކުގައި އަދިވެސް ބިދޭސީ ސޭޓުން!"
70
+ output = generate_text(f"Create an article about: {prompt}")
71
+ print(output)
72
+ ```