Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- README.md +142 -3
- config.json +46 -0
- configuration_deepseek.py +229 -0
- generation_config.json +8 -0
- model-00001-of-00017.safetensors +3 -0
- model-00002-of-00017.safetensors +3 -0
- model-00003-of-00017.safetensors +3 -0
- model-00004-of-00017.safetensors +3 -0
- model-00005-of-00017.safetensors +3 -0
- model-00006-of-00017.safetensors +3 -0
- model-00007-of-00017.safetensors +3 -0
- model-00008-of-00017.safetensors +3 -0
- model-00009-of-00017.safetensors +3 -0
- model-00010-of-00017.safetensors +3 -0
- model-00011-of-00017.safetensors +3 -0
- model-00012-of-00017.safetensors +3 -0
- model-00013-of-00017.safetensors +3 -0
- model-00014-of-00017.safetensors +3 -0
- model-00015-of-00017.safetensors +3 -0
- model-00016-of-00017.safetensors +3 -0
- model-00017-of-00017.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modelling_deepseek.py +1413 -0
- special_tokens_map.json +50 -0
- tokenizer.json +3 -0
- tokenizer_config.json +104 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,142 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
base_model:
|
| 4 |
+
- ai-sage/GigaChat-20B-A3B-base
|
| 5 |
+
language:
|
| 6 |
+
- ru
|
| 7 |
+
- en
|
| 8 |
+
---
|
| 9 |
+
# GigaChat-20B-A3B-instruct
|
| 10 |
+
|
| 11 |
+
Диалоговая модель из семейства моделей GigaChat, основная на [GigaChat-20B-A3B-base](https://huggingface.co/ai-sage/GigaChat-20B-A3B-base). Поддерживает контекст в 131 тысячу токенов.
|
| 12 |
+
|
| 13 |
+
Больше подробностей в [хабр статье](https://habr.com/en/companies/sberdevices/articles/865996/).
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
## Бенчмарки
|
| 17 |
+
|
| 18 |
+
| | T-lite-instruct-0.1<br>(llama 3.1 8B based) | gemma-2-9b-it | GigaChat-20B-A3B-instruct |
|
| 19 |
+
|----------------|---------------------|---------------|---------------------------|
|
| 20 |
+
| MERA | 0.335 | 0.392 | 0.513 |
|
| 21 |
+
| ru-MMLU 5-shot | 0.555 | 0.625 | 0.598 |
|
| 22 |
+
| Shlepa | 0.36 | 0.388 | 0.482 |
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
### Семейство GigaChat
|
| 26 |
+
| | GigaChat-20B-A3B-instruct | GigaChat-Pro v26.20 | GigaChat-Max v26.20 |
|
| 27 |
+
|--------------------------------|---------------------------|---------------------|---------------------|
|
| 28 |
+
| **Математические задачи** |
|
| 29 |
+
| GSM8K 5-shot | 0,763 | 0,782 | 0,929 |
|
| 30 |
+
| MATH 4-shot | 0,426 | 0,446 | 0,53 |
|
| 31 |
+
| **Написание кода** | | | |
|
| 32 |
+
| HumanEval 0-shot | 0,329 | 0,439 | 0,64 |
|
| 33 |
+
| MBPP 0-shot | 0,385 | 0,487 | 0,667 |
|
| 34 |
+
| **Общие знания** |
|
| 35 |
+
| MMLU EN 5-shot | 0,648 | 0,687 | 0,804 |
|
| 36 |
+
| MMLU RU 5-shot<br>Переведенные данные из MMLU EN 5-shot | 0,598 | 0,645 | 0,75 |
|
| 37 |
+
| MMLU RU 1-shot | — | 0,617 | 0,718 |
|
| 38 |
+
| MMLU PRO EN 5-shot | 0,348 | 0,431 | 0,589 |
|
| 39 |
+
| RUBQ 0-shot | 0,675 | 0,724 | 0,73 |
|
| 40 |
+
| WINOGRANDE 4-shot | 0,75 | 0,796 | 0,832 |
|
| 41 |
+
| CyberMetric 0-shot | 0,798 | 0,827 | 0,864 |
|
| 42 |
+
| **Следование инструкциям** |
|
| 43 |
+
| IFEval 0-shot | 0,411 | 0,566 | 0,721 |
|
| 44 |
+
|
| 45 |
+
<details>
|
| 46 |
+
<summary>Особенности замеров</summary>
|
| 47 |
+
GSM8k — это тест, который проверяет, как хорошо модели могут решать задачи с числами. В нашем исследовании мы использовали 5 шотов, чтобы оценить модель, и смотрели на последнее число в ответе. В оригинальное тесте ответ ищется по шаблону: ‘### число’.
|
| 48 |
+
|
| 49 |
+
Тест Math тоже имеет разные версии, которые проверяют математические способности моделей. В нашем исследовании мы давали 4 примера и смотрели на последнее выражение в формате '\boxed{expression}'. Затем оценивали результаты на совпадение с помощью библиотеки sympy.
|
| 50 |
+
|
| 51 |
+
</details>
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
## Requirements
|
| 55 |
+
|
| 56 |
+
* ```transformers>=4.47```
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
## Пример использования через transformers
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
import torch
|
| 67 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
| 68 |
+
|
| 69 |
+
model_name = "ai-sage/GigaChat-20B-A3B-instruct"
|
| 70 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 71 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
|
| 72 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
| 73 |
+
|
| 74 |
+
messages = [
|
| 75 |
+
{"role": "user", "content": "Докажи теорему о неподвижной точке"}
|
| 76 |
+
]
|
| 77 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
| 78 |
+
outputs = model.generate(input_tensor.to(model.device))
|
| 79 |
+
|
| 80 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=False)
|
| 81 |
+
print(result)
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
## Пример использования через vLLM
|
| 86 |
+
|
| 87 |
+
```python
|
| 88 |
+
from transformers import AutoTokenizer
|
| 89 |
+
from vllm import LLM, SamplingParams
|
| 90 |
+
|
| 91 |
+
model_name = "ai-sage/GigaChat-20B-A3B-instruct"
|
| 92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 93 |
+
llm = LLM(model=model_name, trust_remote_code=True)
|
| 94 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=8192)
|
| 95 |
+
|
| 96 |
+
messages_list = [
|
| 97 |
+
[{"role": "user", "content": "Докажи теорему о неподвижной точке"}],
|
| 98 |
+
]
|
| 99 |
+
|
| 100 |
+
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
|
| 101 |
+
|
| 102 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
| 103 |
+
|
| 104 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
| 105 |
+
print(generated_text)
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
В GigaChat-20B-A3B-instruct используется особый способ токенизации текста, поэтому **не рекомендуется** следующий сценарий
|
| 110 |
+
|
| 111 |
+
```python
|
| 112 |
+
input_string = tokenizer.apply_chat_template(messages,tokenize=False, add_generation_prompt=True)
|
| 113 |
+
input_tensor = tokenizer(input_string, return_tensors="pt")
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
## Пример использования vLLM server
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
Запуск сервера
|
| 121 |
+
|
| 122 |
+
```bash
|
| 123 |
+
vllm serve ai-sage/GigaChat-20B-A3B-instruct \
|
| 124 |
+
--disable-log-requests \
|
| 125 |
+
--trust_remote_code \
|
| 126 |
+
--dtype bfloat16 \
|
| 127 |
+
--max-seq-len 8192
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
Пример запроса
|
| 131 |
+
```bash
|
| 132 |
+
curl http://localhost:8000/v1/chat/completions \
|
| 133 |
+
-H "Content-Type: application/json" \
|
| 134 |
+
-d '{
|
| 135 |
+
"model": "ai-sage/GigaChat-20B-A3B-instruct" ,
|
| 136 |
+
"messages": [
|
| 137 |
+
{"role": "system", "content": "Ты ОЧЕНЬ умный математик"},
|
| 138 |
+
{"role": "user", "content": "Докажи теорему о неподвижной точке"}
|
| 139 |
+
]
|
| 140 |
+
}'
|
| 141 |
+
```
|
| 142 |
+
|
config.json
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"DeepseekForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_deepseek.DeepseekConfig",
|
| 9 |
+
"AutoModel": "modelling_deepseek.DeepseekModel",
|
| 10 |
+
"AutoModelForCausalLM": "modelling_deepseek.DeepseekForCausalLM"
|
| 11 |
+
},
|
| 12 |
+
"aux_loss_alpha": 0.001,
|
| 13 |
+
"bos_token_id": 1,
|
| 14 |
+
"eos_token_id": 128001,
|
| 15 |
+
"first_k_dense_replace": 1,
|
| 16 |
+
"head_dim": 128,
|
| 17 |
+
"hidden_act": "silu",
|
| 18 |
+
"hidden_size": 2048,
|
| 19 |
+
"initializer_range": 0.006,
|
| 20 |
+
"intermediate_size": 14336,
|
| 21 |
+
"max_position_embeddings": 131072,
|
| 22 |
+
"mlp_bias": false,
|
| 23 |
+
"model_type": "deepseek",
|
| 24 |
+
"moe_implementation": "eager",
|
| 25 |
+
"moe_intermediate_size": 1792,
|
| 26 |
+
"moe_layer_freq": 1,
|
| 27 |
+
"n_routed_experts": 64,
|
| 28 |
+
"n_shared_experts": 2,
|
| 29 |
+
"norm_topk_prob": false,
|
| 30 |
+
"num_attention_heads": 16,
|
| 31 |
+
"num_experts_per_tok": 6,
|
| 32 |
+
"num_hidden_layers": 28,
|
| 33 |
+
"num_key_value_heads": 8,
|
| 34 |
+
"pad_token_id": 1,
|
| 35 |
+
"pretraining_tp": 1,
|
| 36 |
+
"rms_norm_eps": 1e-05,
|
| 37 |
+
"rope_scaling": null,
|
| 38 |
+
"rope_theta": 1400000,
|
| 39 |
+
"scoring_func": "softmax",
|
| 40 |
+
"seq_aux": true,
|
| 41 |
+
"tie_word_embeddings": false,
|
| 42 |
+
"torch_dtype": "float32",
|
| 43 |
+
"transformers_version": "4.47.0",
|
| 44 |
+
"use_cache": true,
|
| 45 |
+
"vocab_size": 128256
|
| 46 |
+
}
|
configuration_deepseek.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Deepseek Moe model configuration"""
|
| 2 |
+
from transformers.utils import logging
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 5 |
+
|
| 6 |
+
logger = logging.get_logger(__name__)
|
| 7 |
+
|
| 8 |
+
DEEPSEEK_FIXES_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 9 |
+
class DeepseekConfig(PretrainedConfig):
|
| 10 |
+
r"""
|
| 11 |
+
This is the configuration class to store the configuration of a DeepseekModel`]. It is used to instantiate an DeepSeek
|
| 12 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 13 |
+
defaults will yield a similar configuration to that of the DeepseekModel-20b.
|
| 14 |
+
|
| 15 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 16 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
vocab_size (`int`, *optional*, defaults to 128256):
|
| 21 |
+
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
| 22 |
+
`inputs_ids` passed when calling [`DeepseekModel`]
|
| 23 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 24 |
+
Dimension of the hidden representations.
|
| 25 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 26 |
+
Dimension of the MLP representations.
|
| 27 |
+
moe_intermediate_size (`int`, *optional*, defaults to 1792):
|
| 28 |
+
Dimension of the MoE representations.
|
| 29 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 30 |
+
Number of hidden layers in the Transformer decoder.
|
| 31 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 32 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 33 |
+
n_shared_experts (`int`, *optional*, defaults to None):
|
| 34 |
+
Number of shared experts, None means dense model.
|
| 35 |
+
n_routed_experts (`int`, *optional*, defaults to None):
|
| 36 |
+
Number of routed experts, None means dense model.
|
| 37 |
+
num_experts_per_tok (`int`, *optional*, defaults to None):
|
| 38 |
+
Number of selected experts, None means dense model.
|
| 39 |
+
moe_layer_freq (`int`, *optional*, defaults to 1):
|
| 40 |
+
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
|
| 41 |
+
first_k_dense_replace (`int`, *optional*, defaults to 0):
|
| 42 |
+
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
| 43 |
+
\--k dense layers--/
|
| 44 |
+
norm_topk_prob (`bool`, *optional*, defaults to False):
|
| 45 |
+
Whether to normalize the weights of the routed experts.
|
| 46 |
+
scoring_func (`str`, *optional*, defaults to 'softmax'):
|
| 47 |
+
Method of computing expert weights.
|
| 48 |
+
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
| 49 |
+
Auxiliary loss weight coefficient.
|
| 50 |
+
seq_aux = (`bool`, *optional*, defaults to True):
|
| 51 |
+
Whether to compute the auxiliary loss for each individual sample.
|
| 52 |
+
num_key_value_heads (`int`, *optional*):
|
| 53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 55 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 59 |
+
`num_attention_heads`.
|
| 60 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 61 |
+
The non-linear activation function (function or string) in the decoder.
|
| 62 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 63 |
+
The maximum sequence length that this model might ever be used with.
|
| 64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 66 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 67 |
+
The epsilon used by the rms normalization layers.
|
| 68 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 69 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 70 |
+
relevant if `config.is_decoder=True`.
|
| 71 |
+
pad_token_id (`int`, *optional*):
|
| 72 |
+
Padding token id.
|
| 73 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 74 |
+
Beginning of stream token id.
|
| 75 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 76 |
+
End of stream token id.
|
| 77 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 78 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 79 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
| 80 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
| 81 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 82 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 83 |
+
Whether to tie weight embeddings
|
| 84 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 85 |
+
The base period of the RoPE embeddings.
|
| 86 |
+
rope_scaling (`Dict`, *optional*):
|
| 87 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 88 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 89 |
+
accordingly.
|
| 90 |
+
Expected contents:
|
| 91 |
+
`rope_type` (`str`):
|
| 92 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 93 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 94 |
+
`factor` (`float`, *optional*):
|
| 95 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 96 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 97 |
+
original maximum pre-trained length.
|
| 98 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 99 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 100 |
+
pretraining.
|
| 101 |
+
`attention_factor` (`float`, *optional*):
|
| 102 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 103 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 104 |
+
`factor` field to infer the suggested value.
|
| 105 |
+
`beta_fast` (`float`, *optional*):
|
| 106 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 107 |
+
ramp function. If unspecified, it defaults to 32.
|
| 108 |
+
`beta_slow` (`float`, *optional*):
|
| 109 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 110 |
+
ramp function. If unspecified, it defaults to 1.
|
| 111 |
+
`short_factor` (`List[float]`, *optional*):
|
| 112 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 113 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 114 |
+
size divided by the number of attention heads divided by 2
|
| 115 |
+
`long_factor` (`List[float]`, *optional*):
|
| 116 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 117 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 118 |
+
size divided by the number of attention heads divided by 2
|
| 119 |
+
`low_freq_factor` (`float`, *optional*):
|
| 120 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 121 |
+
`high_freq_factor` (`float`, *optional*):
|
| 122 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 123 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
| 124 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 125 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 126 |
+
The dropout ratio for the attention probabilities.
|
| 127 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
| 128 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
| 129 |
+
head_dim (`int`, *optional*):
|
| 130 |
+
The attention head dimension. If None, it will default to hidden_size // num_heads
|
| 131 |
+
|
| 132 |
+
```python
|
| 133 |
+
>>> from transformers import DeepseekModel, DeepseekConfig
|
| 134 |
+
|
| 135 |
+
>>> configuration = DeepseekConfig()
|
| 136 |
+
>>> model = DeepseekModel(configuration)
|
| 137 |
+
|
| 138 |
+
>>> # Accessing the model configuration
|
| 139 |
+
>>> configuration = model.config
|
| 140 |
+
```"""
|
| 141 |
+
|
| 142 |
+
model_type = "deepseek"
|
| 143 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 144 |
+
|
| 145 |
+
def __init__(
|
| 146 |
+
self,
|
| 147 |
+
vocab_size=128256,
|
| 148 |
+
hidden_size=2048,
|
| 149 |
+
intermediate_size=14336,
|
| 150 |
+
moe_intermediate_size = 1792,
|
| 151 |
+
num_hidden_layers=28,
|
| 152 |
+
num_attention_heads=16,
|
| 153 |
+
num_key_value_heads=8,
|
| 154 |
+
n_shared_experts = None,
|
| 155 |
+
n_routed_experts = None,
|
| 156 |
+
num_experts_per_tok = None,
|
| 157 |
+
moe_layer_freq = 1,
|
| 158 |
+
first_k_dense_replace = 0,
|
| 159 |
+
norm_topk_prob = False,
|
| 160 |
+
scoring_func = 'softmax',
|
| 161 |
+
aux_loss_alpha = 0.001,
|
| 162 |
+
seq_aux = True,
|
| 163 |
+
hidden_act="silu",
|
| 164 |
+
max_position_embeddings=2048,
|
| 165 |
+
initializer_range=0.02,
|
| 166 |
+
rms_norm_eps=1e-6,
|
| 167 |
+
use_cache=True,
|
| 168 |
+
pad_token_id=None,
|
| 169 |
+
bos_token_id=1,
|
| 170 |
+
eos_token_id=2,
|
| 171 |
+
pretraining_tp=1,
|
| 172 |
+
tie_word_embeddings=False,
|
| 173 |
+
rope_theta=10000.0,
|
| 174 |
+
rope_scaling=None,
|
| 175 |
+
attention_bias=False,
|
| 176 |
+
attention_dropout=0.0,
|
| 177 |
+
moe_implementation="eager",
|
| 178 |
+
mlp_bias=False,
|
| 179 |
+
head_dim=None,
|
| 180 |
+
**kwargs,
|
| 181 |
+
):
|
| 182 |
+
assert moe_implementation in ('eager', ), "Invalid moe_implementation value."
|
| 183 |
+
self.vocab_size = vocab_size
|
| 184 |
+
self.max_position_embeddings = max_position_embeddings
|
| 185 |
+
self.hidden_size = hidden_size
|
| 186 |
+
self.intermediate_size = intermediate_size
|
| 187 |
+
self.moe_intermediate_size = moe_intermediate_size
|
| 188 |
+
self.num_hidden_layers = num_hidden_layers
|
| 189 |
+
self.num_attention_heads = num_attention_heads
|
| 190 |
+
self.n_shared_experts = n_shared_experts
|
| 191 |
+
self.n_routed_experts = n_routed_experts
|
| 192 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 193 |
+
self.moe_layer_freq = moe_layer_freq
|
| 194 |
+
self.first_k_dense_replace = first_k_dense_replace
|
| 195 |
+
self.norm_topk_prob = norm_topk_prob
|
| 196 |
+
self.scoring_func = scoring_func
|
| 197 |
+
self.aux_loss_alpha = aux_loss_alpha
|
| 198 |
+
self.seq_aux = seq_aux
|
| 199 |
+
|
| 200 |
+
# for backward compatibility
|
| 201 |
+
if num_key_value_heads is None:
|
| 202 |
+
num_key_value_heads = num_attention_heads
|
| 203 |
+
|
| 204 |
+
self.num_key_value_heads = num_key_value_heads
|
| 205 |
+
self.hidden_act = hidden_act
|
| 206 |
+
self.initializer_range = initializer_range
|
| 207 |
+
self.rms_norm_eps = rms_norm_eps
|
| 208 |
+
self.pretraining_tp = pretraining_tp
|
| 209 |
+
self.use_cache = use_cache
|
| 210 |
+
self.rope_theta = rope_theta
|
| 211 |
+
self.rope_scaling = rope_scaling
|
| 212 |
+
self.attention_bias = attention_bias
|
| 213 |
+
self.attention_dropout = attention_dropout
|
| 214 |
+
self.mlp_bias = mlp_bias
|
| 215 |
+
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
| 216 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 217 |
+
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
| 218 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 219 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 220 |
+
rope_config_validation(self)
|
| 221 |
+
self.moe_implementation = moe_implementation
|
| 222 |
+
|
| 223 |
+
super().__init__(
|
| 224 |
+
pad_token_id=pad_token_id,
|
| 225 |
+
bos_token_id=bos_token_id,
|
| 226 |
+
eos_token_id=eos_token_id,
|
| 227 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 228 |
+
**kwargs,
|
| 229 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 128001,
|
| 5 |
+
"max_new_tokens": 2048,
|
| 6 |
+
"pad_token_id": 2,
|
| 7 |
+
"transformers_version": "4.47.0"
|
| 8 |
+
}
|
model-00001-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b41a0f6c36f9088df200e1f08e70df1b54b73f7cb7a83dfd1b5d98ab424d749c
|
| 3 |
+
size 4989712544
|
model-00002-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:292c747d4cf67c6cf94e03425b714b44021bd76d34085f39c82acbf18c8a2473
|
| 3 |
+
size 4998095736
|
model-00003-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7f1fb5dfc504eb9be2629a58aa745bbd00ef9a852a3d87c84fb9e4badb0c9cc
|
| 3 |
+
size 4990247720
|
model-00004-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1c364978244f81266267aa74acdb1ba7370956e746cfa1c0028e24894e25002c
|
| 3 |
+
size 4990247720
|
model-00005-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:104fed1aec38eef22ff88c034f3966b73d33e06ca41e8595433bcfa893113830
|
| 3 |
+
size 4998095736
|
model-00006-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b2c2b511754ba9a98db560328dc39dfd73fbb5525dba13aaeeeafd0c2881d9ea
|
| 3 |
+
size 4990247856
|
model-00007-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:46e7ea3322c6404610f89e2b2199b77a583b75d0f1bc4c0375197425f278eab0
|
| 3 |
+
size 4990248056
|
model-00008-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1a4b48ea651c3a93a3c5d9dcbc645e2fb626e9ab47a153fe3cfea7db07f9e96
|
| 3 |
+
size 4988150944
|
model-00009-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6bbab8358c345b3f087874756bd70cc15b4e2583350c67a660b6545f8cf92ba4
|
| 3 |
+
size 4985513000
|
model-00010-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:af454fd8bccac0069ddddc6ed29be7a6a1c24ed7c00ffa0f105551a4c4af2dcb
|
| 3 |
+
size 4990248056
|
model-00011-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0309b719de3f3e739b0e6ad790b42473a7e936590f56d3555a2204c0d3265785
|
| 3 |
+
size 4990248080
|
model-00012-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb4c0d9c868f93178c68205acd0f2b366bab3d054bcdb2345a5fa891dffce6a1
|
| 3 |
+
size 4998096056
|
model-00013-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7e28614d4de6f96c925462701d7ae5eafa21b498ae0d5119b9ef1eefef3d5e08
|
| 3 |
+
size 4990248056
|
model-00014-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1bb010dec7d690409040487f089f3fd1f638888fdeea2da945019ddeac4573ac
|
| 3 |
+
size 4990248064
|
model-00015-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:41bf935b31e3a7ef6c9ba6480175a62dc5e47bb7d053cd00bf83e228718b0a4b
|
| 3 |
+
size 4998096072
|
model-00016-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb3b278bc932e0ebb448741eb40d1592edc366e8d84049b524ccd4e1133247a6
|
| 3 |
+
size 4990248056
|
model-00017-of-00017.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f8e055c522cfd55129586656f898853c5dec4b4471b99f6f157ba9ae5965133
|
| 3 |
+
size 2489880664
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modelling_deepseek.py
ADDED
|
@@ -0,0 +1,1413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
""" PyTorch Deepseek Moe model with fixed Rope and updated code."""
|
| 3 |
+
import math
|
| 4 |
+
from typing import List, Optional, Tuple, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torch.utils.checkpoint
|
| 9 |
+
from torch import nn
|
| 10 |
+
|
| 11 |
+
from transformers.activations import ACT2FN
|
| 12 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 13 |
+
from transformers.generation import GenerationMixin
|
| 14 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 15 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
|
| 16 |
+
from transformers.modeling_outputs import (
|
| 17 |
+
BaseModelOutputWithPast,
|
| 18 |
+
CausalLMOutputWithPast,
|
| 19 |
+
SequenceClassifierOutputWithPast,
|
| 20 |
+
)
|
| 21 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 22 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 23 |
+
from transformers.processing_utils import Unpack
|
| 24 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 25 |
+
from transformers.utils import (
|
| 26 |
+
LossKwargs,
|
| 27 |
+
add_start_docstrings,
|
| 28 |
+
add_start_docstrings_to_model_forward,
|
| 29 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 30 |
+
logging,
|
| 31 |
+
replace_return_docstrings,
|
| 32 |
+
)
|
| 33 |
+
from .configuration_deepseek import DeepseekConfig
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
logger = logging.get_logger(__name__)
|
| 37 |
+
|
| 38 |
+
_CONFIG_FOR_DOC = "DeepseekConfig"
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class DeepseekRMSNorm(nn.Module):
|
| 42 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 43 |
+
"""
|
| 44 |
+
DeepseekRMSNorm is equivalent to T5LayerNorm
|
| 45 |
+
"""
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 48 |
+
self.variance_epsilon = eps
|
| 49 |
+
|
| 50 |
+
def forward(self, hidden_states):
|
| 51 |
+
input_dtype = hidden_states.dtype
|
| 52 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 53 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 54 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 55 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 56 |
+
|
| 57 |
+
def extra_repr(self):
|
| 58 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
ALL_LAYERNORM_LAYERS.append(DeepseekRMSNorm)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class DeepseekRotaryEmbedding(nn.Module):
|
| 65 |
+
def __init__(
|
| 66 |
+
self,
|
| 67 |
+
dim=None,
|
| 68 |
+
max_position_embeddings=2048,
|
| 69 |
+
base=10000,
|
| 70 |
+
device=None,
|
| 71 |
+
scaling_factor=1.0,
|
| 72 |
+
rope_type="default",
|
| 73 |
+
config: Optional[DeepseekConfig] = None,
|
| 74 |
+
):
|
| 75 |
+
super().__init__()
|
| 76 |
+
# TODO (joao): remove the `if` below, only used for BC
|
| 77 |
+
self.rope_kwargs = {}
|
| 78 |
+
if config is None:
|
| 79 |
+
logger.warning_once(
|
| 80 |
+
"`DeepseekRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
| 81 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
| 82 |
+
)
|
| 83 |
+
self.rope_kwargs = {
|
| 84 |
+
"rope_type": rope_type,
|
| 85 |
+
"factor": scaling_factor,
|
| 86 |
+
"dim": dim,
|
| 87 |
+
"base": base,
|
| 88 |
+
"max_position_embeddings": max_position_embeddings,
|
| 89 |
+
}
|
| 90 |
+
self.rope_type = rope_type
|
| 91 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 92 |
+
self.original_max_seq_len = max_position_embeddings
|
| 93 |
+
else:
|
| 94 |
+
# BC: "rope_type" was originally "type"
|
| 95 |
+
if config.rope_scaling is not None:
|
| 96 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 97 |
+
else:
|
| 98 |
+
self.rope_type = "default"
|
| 99 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 100 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 101 |
+
|
| 102 |
+
self.config = config
|
| 103 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 104 |
+
|
| 105 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
| 106 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 107 |
+
self.original_inv_freq = self.inv_freq
|
| 108 |
+
|
| 109 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
| 110 |
+
"""
|
| 111 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 112 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
| 113 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 114 |
+
"""
|
| 115 |
+
seq_len = torch.max(position_ids) + 1
|
| 116 |
+
if seq_len > self.max_seq_len_cached: # growth
|
| 117 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
| 118 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
| 119 |
+
)
|
| 120 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 121 |
+
self.max_seq_len_cached = seq_len
|
| 122 |
+
|
| 123 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 124 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 125 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
| 126 |
+
|
| 127 |
+
@torch.no_grad()
|
| 128 |
+
def forward(self, x, position_ids):
|
| 129 |
+
if "dynamic" in self.rope_type:
|
| 130 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 131 |
+
|
| 132 |
+
# Core RoPE block
|
| 133 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 134 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 135 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 136 |
+
device_type = x.device.type
|
| 137 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 138 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 139 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 140 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 141 |
+
cos = emb.cos()
|
| 142 |
+
sin = emb.sin()
|
| 143 |
+
|
| 144 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 145 |
+
cos = cos * self.attention_scaling
|
| 146 |
+
sin = sin * self.attention_scaling
|
| 147 |
+
|
| 148 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
class DeepseekLinearScalingRotaryEmbedding(DeepseekRotaryEmbedding):
|
| 152 |
+
"""DeepseekRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 153 |
+
|
| 154 |
+
def __init__(self, *args, **kwargs):
|
| 155 |
+
logger.warning_once(
|
| 156 |
+
"`DeepseekLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
| 157 |
+
"`DeepseekRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
|
| 158 |
+
)
|
| 159 |
+
kwargs["rope_type"] = "linear"
|
| 160 |
+
super().__init__(*args, **kwargs)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class DeepseekDynamicNTKScalingRotaryEmbedding(DeepseekRotaryEmbedding):
|
| 164 |
+
"""DeepseekRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
| 165 |
+
|
| 166 |
+
def __init__(self, *args, **kwargs):
|
| 167 |
+
logger.warning_once(
|
| 168 |
+
"`DeepseekDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
| 169 |
+
"`DeepseekRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
|
| 170 |
+
"__init__)."
|
| 171 |
+
)
|
| 172 |
+
kwargs["rope_type"] = "dynamic"
|
| 173 |
+
super().__init__(*args, **kwargs)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def rotate_half(x):
|
| 177 |
+
"""Rotates half the hidden dims of the input."""
|
| 178 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 179 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 180 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 184 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
q (`torch.Tensor`): The query tensor.
|
| 188 |
+
k (`torch.Tensor`): The key tensor.
|
| 189 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 190 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 191 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 192 |
+
Deprecated and unused.
|
| 193 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 194 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 195 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 196 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 197 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 198 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 199 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 200 |
+
Returns:
|
| 201 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 202 |
+
"""
|
| 203 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 204 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 205 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 206 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 207 |
+
return q_embed, k_embed
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
class DeepseekMLP(nn.Module):
|
| 211 |
+
def __init__(self, config, hidden_size=None, intermediate_size=None):
|
| 212 |
+
super().__init__()
|
| 213 |
+
self.config = config
|
| 214 |
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
| 215 |
+
self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
|
| 216 |
+
|
| 217 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 218 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 219 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 220 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 221 |
+
|
| 222 |
+
def forward(self, x, **kwargs):
|
| 223 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 224 |
+
return down_proj
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
class MoEGate(nn.Module):
|
| 228 |
+
def __init__(self, config):
|
| 229 |
+
super().__init__()
|
| 230 |
+
self.config = config
|
| 231 |
+
self.top_k = config.num_experts_per_tok
|
| 232 |
+
self.n_routed_experts = config.n_routed_experts
|
| 233 |
+
|
| 234 |
+
self.scoring_func = config.scoring_func
|
| 235 |
+
self.alpha = config.aux_loss_alpha
|
| 236 |
+
self.seq_aux = config.seq_aux
|
| 237 |
+
|
| 238 |
+
# topk selection algorithm
|
| 239 |
+
self.norm_topk_prob = config.norm_topk_prob
|
| 240 |
+
self.gating_dim = config.hidden_size
|
| 241 |
+
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
|
| 242 |
+
|
| 243 |
+
self.reset_parameters()
|
| 244 |
+
|
| 245 |
+
def reset_parameters(self) -> None:
|
| 246 |
+
import torch.nn.init as init
|
| 247 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
| 248 |
+
|
| 249 |
+
def forward(self, hidden_states):
|
| 250 |
+
bsz, seq_len, h = hidden_states.shape
|
| 251 |
+
# Compute gating score
|
| 252 |
+
hidden_states = hidden_states.view(-1, h)
|
| 253 |
+
logits = F.linear(hidden_states, self.weight, None)
|
| 254 |
+
if self.scoring_func == 'softmax':
|
| 255 |
+
scores = logits.to(torch.float32).softmax(dim=-1)
|
| 256 |
+
else:
|
| 257 |
+
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
|
| 258 |
+
|
| 259 |
+
# Select top-k experts
|
| 260 |
+
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
|
| 261 |
+
|
| 262 |
+
# Norm gate to sum 1
|
| 263 |
+
if self.top_k > 1 and self.norm_topk_prob:
|
| 264 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
| 265 |
+
topk_weight = topk_weight / denominator
|
| 266 |
+
|
| 267 |
+
# Expert-level computation auxiliary loss
|
| 268 |
+
aux_loss = None
|
| 269 |
+
return topk_idx, topk_weight.to(hidden_states.dtype), aux_loss
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
class AddAuxiliaryLoss(torch.autograd.Function):
|
| 273 |
+
"""
|
| 274 |
+
The trick function of adding auxiliary (aux) loss,
|
| 275 |
+
which includes the gradient of the aux loss during backpropagation.
|
| 276 |
+
"""
|
| 277 |
+
|
| 278 |
+
@staticmethod
|
| 279 |
+
def forward(ctx, x, loss):
|
| 280 |
+
assert loss.numel() == 1
|
| 281 |
+
ctx.dtype = loss.dtype
|
| 282 |
+
ctx.required_aux_loss = loss.requires_grad
|
| 283 |
+
return x
|
| 284 |
+
|
| 285 |
+
@staticmethod
|
| 286 |
+
def backward(ctx, grad_output):
|
| 287 |
+
grad_loss = None
|
| 288 |
+
if ctx.required_aux_loss:
|
| 289 |
+
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
|
| 290 |
+
return grad_output, grad_loss
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
class DeepseekMoE(nn.Module):
|
| 294 |
+
"""
|
| 295 |
+
A mixed expert module containing shared experts.
|
| 296 |
+
"""
|
| 297 |
+
|
| 298 |
+
def __init__(self, config):
|
| 299 |
+
super().__init__()
|
| 300 |
+
self.config = config
|
| 301 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
| 302 |
+
self.experts = nn.ModuleList(
|
| 303 |
+
[DeepseekMLP(config, intermediate_size=config.moe_intermediate_size) for i in
|
| 304 |
+
range(config.n_routed_experts)])
|
| 305 |
+
self.gate = MoEGate(config)
|
| 306 |
+
if config.n_shared_experts is not None:
|
| 307 |
+
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
| 308 |
+
self.shared_experts = DeepseekMLP(config=config, intermediate_size=intermediate_size)
|
| 309 |
+
|
| 310 |
+
def forward(self, hidden_states):
|
| 311 |
+
identity = hidden_states
|
| 312 |
+
orig_shape = hidden_states.shape
|
| 313 |
+
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
|
| 314 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
| 315 |
+
flat_topk_idx = topk_idx.view(-1)
|
| 316 |
+
if self.training:
|
| 317 |
+
y = self.moe_train(hidden_states, flat_topk_idx, topk_weight.view(-1, 1))
|
| 318 |
+
y = y.view(*orig_shape)
|
| 319 |
+
y = AddAuxiliaryLoss.apply(y, aux_loss)
|
| 320 |
+
else:
|
| 321 |
+
y = self.moe_infer(hidden_states, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
| 322 |
+
if self.config.n_shared_experts is not None:
|
| 323 |
+
y = y + self.shared_experts(identity)
|
| 324 |
+
return y
|
| 325 |
+
|
| 326 |
+
def moe_train(self, hidden_states, flat_topk_idx, topk_weight):
|
| 327 |
+
hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
|
| 328 |
+
y = torch.empty_like(hidden_states)
|
| 329 |
+
for i, expert in enumerate(self.experts):
|
| 330 |
+
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
|
| 331 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
| 332 |
+
return y
|
| 333 |
+
|
| 334 |
+
@torch.no_grad()
|
| 335 |
+
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
| 336 |
+
expert_cache = torch.zeros_like(x)
|
| 337 |
+
idxs = flat_expert_indices.argsort()
|
| 338 |
+
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
| 339 |
+
token_idxs = idxs // self.num_experts_per_tok
|
| 340 |
+
for i, end_idx in enumerate(tokens_per_expert):
|
| 341 |
+
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
|
| 342 |
+
if start_idx == end_idx:
|
| 343 |
+
continue
|
| 344 |
+
expert = self.experts[i]
|
| 345 |
+
exp_token_idx = token_idxs[start_idx:end_idx]
|
| 346 |
+
expert_tokens = x[exp_token_idx]
|
| 347 |
+
expert_out = expert(expert_tokens)
|
| 348 |
+
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
| 349 |
+
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
|
| 350 |
+
return expert_cache
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
Deepseek_MOE_CLASSES = {
|
| 354 |
+
'eager': DeepseekMoE,
|
| 355 |
+
}
|
| 356 |
+
|
| 357 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 358 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 359 |
+
"""
|
| 360 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 361 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 362 |
+
"""
|
| 363 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 364 |
+
if n_rep == 1:
|
| 365 |
+
return hidden_states
|
| 366 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 367 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Deepseek
|
| 371 |
+
class DeepseekAttention(nn.Module):
|
| 372 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 373 |
+
|
| 374 |
+
def __init__(self, config: DeepseekConfig, layer_idx: Optional[int] = None):
|
| 375 |
+
super().__init__()
|
| 376 |
+
self.config = config
|
| 377 |
+
self.layer_idx = layer_idx
|
| 378 |
+
if layer_idx is None:
|
| 379 |
+
logger.warning_once(
|
| 380 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
| 381 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
| 382 |
+
"when creating this class."
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
self.attention_dropout = config.attention_dropout
|
| 386 |
+
self.hidden_size = config.hidden_size
|
| 387 |
+
self.num_heads = config.num_attention_heads
|
| 388 |
+
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
|
| 389 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 390 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 391 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 392 |
+
self.rope_theta = config.rope_theta
|
| 393 |
+
self.is_causal = True
|
| 394 |
+
|
| 395 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
| 396 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 397 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 398 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
| 399 |
+
|
| 400 |
+
# TODO (joao): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
|
| 401 |
+
self.rotary_emb = DeepseekRotaryEmbedding(config=self.config)
|
| 402 |
+
|
| 403 |
+
def forward(
|
| 404 |
+
self,
|
| 405 |
+
hidden_states: torch.Tensor,
|
| 406 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 407 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 408 |
+
past_key_value: Optional[Cache] = None,
|
| 409 |
+
output_attentions: bool = False,
|
| 410 |
+
use_cache: bool = False,
|
| 411 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 412 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 413 |
+
**kwargs,
|
| 414 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 415 |
+
bsz, q_len, _ = hidden_states.size()
|
| 416 |
+
|
| 417 |
+
query_states = self.q_proj(hidden_states)
|
| 418 |
+
key_states = self.k_proj(hidden_states)
|
| 419 |
+
value_states = self.v_proj(hidden_states)
|
| 420 |
+
|
| 421 |
+
# use -1 to infer num_heads and num_key_value_heads as they may vary if tensor parallel is used
|
| 422 |
+
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 423 |
+
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 424 |
+
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 425 |
+
|
| 426 |
+
if position_embeddings is None:
|
| 427 |
+
logger.warning_once(
|
| 428 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 429 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 430 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 431 |
+
"removed and `position_embeddings` will be mandatory."
|
| 432 |
+
)
|
| 433 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 434 |
+
else:
|
| 435 |
+
cos, sin = position_embeddings
|
| 436 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 437 |
+
|
| 438 |
+
if past_key_value is not None:
|
| 439 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 440 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 441 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 442 |
+
|
| 443 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 444 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 445 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 446 |
+
|
| 447 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 448 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 449 |
+
attn_weights = attn_weights + causal_mask
|
| 450 |
+
|
| 451 |
+
# upcast attention to fp32
|
| 452 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 453 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 454 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 455 |
+
|
| 456 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 457 |
+
raise ValueError(
|
| 458 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 459 |
+
f" {attn_output.size()}"
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 463 |
+
|
| 464 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
| 465 |
+
|
| 466 |
+
attn_output = self.o_proj(attn_output)
|
| 467 |
+
|
| 468 |
+
if not output_attentions:
|
| 469 |
+
attn_weights = None
|
| 470 |
+
|
| 471 |
+
return attn_output, attn_weights, past_key_value
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->Deepseek
|
| 475 |
+
class DeepseekFlashAttention2(DeepseekAttention):
|
| 476 |
+
"""
|
| 477 |
+
Deepseek flash attention module. This module inherits from `DeepseekAttention` as the weights of the module stays
|
| 478 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 479 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 480 |
+
"""
|
| 481 |
+
|
| 482 |
+
def __init__(self, *args, **kwargs):
|
| 483 |
+
super().__init__(*args, **kwargs)
|
| 484 |
+
|
| 485 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 486 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 487 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 488 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 489 |
+
|
| 490 |
+
def forward(
|
| 491 |
+
self,
|
| 492 |
+
hidden_states: torch.Tensor,
|
| 493 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 494 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 495 |
+
past_key_value: Optional[Cache] = None,
|
| 496 |
+
output_attentions: bool = False,
|
| 497 |
+
use_cache: bool = False,
|
| 498 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 499 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 500 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 501 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 502 |
+
if isinstance(past_key_value, StaticCache):
|
| 503 |
+
raise ValueError(
|
| 504 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
| 505 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
output_attentions = False
|
| 509 |
+
|
| 510 |
+
bsz, q_len, _ = hidden_states.size()
|
| 511 |
+
|
| 512 |
+
query_states = self.q_proj(hidden_states)
|
| 513 |
+
key_states = self.k_proj(hidden_states)
|
| 514 |
+
value_states = self.v_proj(hidden_states)
|
| 515 |
+
|
| 516 |
+
# Flash attention requires the input to have the shape
|
| 517 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 518 |
+
# therefore we just need to keep the original shape
|
| 519 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 520 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 521 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 522 |
+
|
| 523 |
+
if position_embeddings is None:
|
| 524 |
+
logger.warning_once(
|
| 525 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 526 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 527 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 528 |
+
"removed and `position_embeddings` will be mandatory."
|
| 529 |
+
)
|
| 530 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 531 |
+
else:
|
| 532 |
+
cos, sin = position_embeddings
|
| 533 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 534 |
+
|
| 535 |
+
if past_key_value is not None:
|
| 536 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 537 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 538 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 539 |
+
|
| 540 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 541 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 542 |
+
query_states = query_states.transpose(1, 2)
|
| 543 |
+
key_states = key_states.transpose(1, 2)
|
| 544 |
+
value_states = value_states.transpose(1, 2)
|
| 545 |
+
|
| 546 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
| 547 |
+
|
| 548 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 549 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 550 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 551 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 552 |
+
# in fp32. (DeepseekRMSNorm handles it correctly)
|
| 553 |
+
|
| 554 |
+
input_dtype = query_states.dtype
|
| 555 |
+
if input_dtype == torch.float32:
|
| 556 |
+
if torch.is_autocast_enabled():
|
| 557 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 558 |
+
# Handle the case where the model is quantized
|
| 559 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 560 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 561 |
+
else:
|
| 562 |
+
target_dtype = self.q_proj.weight.dtype
|
| 563 |
+
|
| 564 |
+
logger.warning_once(
|
| 565 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 566 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 567 |
+
f" {target_dtype}."
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
query_states = query_states.to(target_dtype)
|
| 571 |
+
key_states = key_states.to(target_dtype)
|
| 572 |
+
value_states = value_states.to(target_dtype)
|
| 573 |
+
|
| 574 |
+
attn_output = _flash_attention_forward(
|
| 575 |
+
query_states,
|
| 576 |
+
key_states,
|
| 577 |
+
value_states,
|
| 578 |
+
attention_mask,
|
| 579 |
+
q_len,
|
| 580 |
+
position_ids=position_ids,
|
| 581 |
+
dropout=dropout_rate,
|
| 582 |
+
sliding_window=getattr(self, "sliding_window", None),
|
| 583 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 584 |
+
is_causal=self.is_causal,
|
| 585 |
+
**kwargs,
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
| 589 |
+
attn_output = self.o_proj(attn_output)
|
| 590 |
+
|
| 591 |
+
if not output_attentions:
|
| 592 |
+
attn_weights = None
|
| 593 |
+
|
| 594 |
+
return attn_output, attn_weights, past_key_value
|
| 595 |
+
|
| 596 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Deepseek
|
| 597 |
+
class DeepseekSdpaAttention(DeepseekAttention):
|
| 598 |
+
"""
|
| 599 |
+
Deepseek attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 600 |
+
`DeepseekAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 601 |
+
SDPA API.
|
| 602 |
+
"""
|
| 603 |
+
|
| 604 |
+
# Adapted from DeepseekAttention.forward
|
| 605 |
+
def forward(
|
| 606 |
+
self,
|
| 607 |
+
hidden_states: torch.Tensor,
|
| 608 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 609 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 610 |
+
past_key_value: Optional[Cache] = None,
|
| 611 |
+
output_attentions: bool = False,
|
| 612 |
+
use_cache: bool = False,
|
| 613 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 614 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 615 |
+
**kwargs,
|
| 616 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 617 |
+
if output_attentions:
|
| 618 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 619 |
+
logger.warning_once(
|
| 620 |
+
"DeepseekModel is using DeepseekSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 621 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 622 |
+
)
|
| 623 |
+
return super().forward(
|
| 624 |
+
hidden_states=hidden_states,
|
| 625 |
+
attention_mask=attention_mask,
|
| 626 |
+
position_ids=position_ids,
|
| 627 |
+
past_key_value=past_key_value,
|
| 628 |
+
output_attentions=output_attentions,
|
| 629 |
+
use_cache=use_cache,
|
| 630 |
+
cache_position=cache_position,
|
| 631 |
+
position_embeddings=position_embeddings,
|
| 632 |
+
)
|
| 633 |
+
|
| 634 |
+
bsz, q_len, _ = hidden_states.size()
|
| 635 |
+
|
| 636 |
+
query_states = self.q_proj(hidden_states)
|
| 637 |
+
key_states = self.k_proj(hidden_states)
|
| 638 |
+
value_states = self.v_proj(hidden_states)
|
| 639 |
+
|
| 640 |
+
# use -1 to infer num_heads and num_key_value_heads as they may vary if tensor parallel is used
|
| 641 |
+
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 642 |
+
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 643 |
+
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 644 |
+
|
| 645 |
+
if position_embeddings is None:
|
| 646 |
+
logger.warning_once(
|
| 647 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 648 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 649 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 650 |
+
"removed and `position_embeddings` will be mandatory."
|
| 651 |
+
)
|
| 652 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 653 |
+
else:
|
| 654 |
+
cos, sin = position_embeddings
|
| 655 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 656 |
+
|
| 657 |
+
if past_key_value is not None:
|
| 658 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 659 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 660 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 661 |
+
|
| 662 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 663 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 664 |
+
|
| 665 |
+
causal_mask = attention_mask
|
| 666 |
+
if attention_mask is not None:
|
| 667 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
| 668 |
+
|
| 669 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 670 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 671 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
| 672 |
+
query_states = query_states.contiguous()
|
| 673 |
+
key_states = key_states.contiguous()
|
| 674 |
+
value_states = value_states.contiguous()
|
| 675 |
+
|
| 676 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 677 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 678 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
| 679 |
+
|
| 680 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 681 |
+
query_states,
|
| 682 |
+
key_states,
|
| 683 |
+
value_states,
|
| 684 |
+
attn_mask=causal_mask,
|
| 685 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 686 |
+
is_causal=is_causal,
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 690 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
| 691 |
+
|
| 692 |
+
attn_output = self.o_proj(attn_output)
|
| 693 |
+
|
| 694 |
+
return attn_output, None, past_key_value
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
Deepseek_ATTENTION_CLASSES = {
|
| 698 |
+
"eager": DeepseekAttention,
|
| 699 |
+
"flash_attention_2": DeepseekFlashAttention2,
|
| 700 |
+
"sdpa": DeepseekSdpaAttention,
|
| 701 |
+
}
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
class DeepseekDecoderLayer(nn.Module):
|
| 705 |
+
def __init__(self, config: DeepseekConfig, layer_idx: int):
|
| 706 |
+
super().__init__()
|
| 707 |
+
self.hidden_size = config.hidden_size
|
| 708 |
+
|
| 709 |
+
self.self_attn = Deepseek_ATTENTION_CLASSES[config._attn_implementation](config=config,
|
| 710 |
+
layer_idx=layer_idx)
|
| 711 |
+
|
| 712 |
+
self.mlp = Deepseek_MOE_CLASSES[config.moe_implementation](config) if (config.n_routed_experts is not None and \
|
| 713 |
+
layer_idx >= config.first_k_dense_replace and layer_idx % config.moe_layer_freq == 0) \
|
| 714 |
+
else DeepseekMLP(config)
|
| 715 |
+
self.input_layernorm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 716 |
+
self.post_attention_layernorm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 717 |
+
|
| 718 |
+
def forward(
|
| 719 |
+
self,
|
| 720 |
+
hidden_states: torch.Tensor,
|
| 721 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 722 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 723 |
+
past_key_value: Optional[Cache] = None,
|
| 724 |
+
output_attentions: Optional[bool] = False,
|
| 725 |
+
use_cache: Optional[bool] = False,
|
| 726 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 727 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 728 |
+
**kwargs,
|
| 729 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 730 |
+
"""
|
| 731 |
+
Args:
|
| 732 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 733 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 734 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 735 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 736 |
+
output_attentions (`bool`, *optional*):
|
| 737 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 738 |
+
returned tensors for more detail.
|
| 739 |
+
use_cache (`bool`, *optional*):
|
| 740 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 741 |
+
(see `past_key_values`).
|
| 742 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 743 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 744 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
| 745 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 746 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 747 |
+
with `head_dim` being the embedding dimension of each attention head.
|
| 748 |
+
kwargs (`dict`, *optional*):
|
| 749 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 750 |
+
into the model
|
| 751 |
+
"""
|
| 752 |
+
residual = hidden_states
|
| 753 |
+
|
| 754 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 755 |
+
|
| 756 |
+
# Self Attention
|
| 757 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 758 |
+
hidden_states=hidden_states,
|
| 759 |
+
attention_mask=attention_mask,
|
| 760 |
+
position_ids=position_ids,
|
| 761 |
+
past_key_value=past_key_value,
|
| 762 |
+
output_attentions=output_attentions,
|
| 763 |
+
use_cache=use_cache,
|
| 764 |
+
cache_position=cache_position,
|
| 765 |
+
position_embeddings=position_embeddings,
|
| 766 |
+
**kwargs,
|
| 767 |
+
)
|
| 768 |
+
hidden_states = residual + hidden_states
|
| 769 |
+
|
| 770 |
+
# Fully Connected
|
| 771 |
+
residual = hidden_states
|
| 772 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 773 |
+
hidden_states = self.mlp(hidden_states)
|
| 774 |
+
hidden_states = residual + hidden_states
|
| 775 |
+
|
| 776 |
+
outputs = (hidden_states,)
|
| 777 |
+
|
| 778 |
+
if output_attentions:
|
| 779 |
+
outputs += (self_attn_weights,)
|
| 780 |
+
|
| 781 |
+
if use_cache:
|
| 782 |
+
outputs += (present_key_value,)
|
| 783 |
+
|
| 784 |
+
return outputs
|
| 785 |
+
|
| 786 |
+
|
| 787 |
+
Deepseek_START_DOCSTRING = r"""
|
| 788 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 789 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 790 |
+
etc.)
|
| 791 |
+
|
| 792 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 793 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 794 |
+
and behavior.
|
| 795 |
+
|
| 796 |
+
Parameters:
|
| 797 |
+
config ([`DeepseekConfig`]):
|
| 798 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 799 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 800 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 801 |
+
"""
|
| 802 |
+
|
| 803 |
+
|
| 804 |
+
@add_start_docstrings(
|
| 805 |
+
"The bare Deepseek Model outputting raw hidden-states without any specific head on top.",
|
| 806 |
+
Deepseek_START_DOCSTRING,
|
| 807 |
+
)
|
| 808 |
+
class DeepseekPreTrainedModel(PreTrainedModel):
|
| 809 |
+
config_class = DeepseekConfig
|
| 810 |
+
base_model_prefix = "model"
|
| 811 |
+
supports_gradient_checkpointing = True
|
| 812 |
+
_no_split_modules = ["DeepseekDecoderLayer"]
|
| 813 |
+
_skip_keys_device_placement = "past_key_values"
|
| 814 |
+
_supports_flash_attn_2 = True
|
| 815 |
+
_supports_sdpa = True
|
| 816 |
+
_supports_cache_class = True
|
| 817 |
+
_supports_quantized_cache = True
|
| 818 |
+
_supports_static_cache = True
|
| 819 |
+
|
| 820 |
+
def _init_weights(self, module):
|
| 821 |
+
std = self.config.initializer_range
|
| 822 |
+
if isinstance(module, nn.Linear):
|
| 823 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 824 |
+
if module.bias is not None:
|
| 825 |
+
module.bias.data.zero_()
|
| 826 |
+
elif isinstance(module, nn.Embedding):
|
| 827 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 828 |
+
if module.padding_idx is not None:
|
| 829 |
+
module.weight.data[module.padding_idx].zero_()
|
| 830 |
+
|
| 831 |
+
|
| 832 |
+
Deepseek_INPUTS_DOCSTRING = r"""
|
| 833 |
+
Args:
|
| 834 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 835 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 836 |
+
it.
|
| 837 |
+
|
| 838 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 839 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 840 |
+
|
| 841 |
+
[What are input IDs?](../glossary#input-ids)
|
| 842 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 843 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 844 |
+
|
| 845 |
+
- 1 for tokens that are **not masked**,
|
| 846 |
+
- 0 for tokens that are **masked**.
|
| 847 |
+
|
| 848 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 849 |
+
|
| 850 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 851 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 852 |
+
|
| 853 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 854 |
+
`past_key_values`).
|
| 855 |
+
|
| 856 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 857 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 858 |
+
information on the default strategy.
|
| 859 |
+
|
| 860 |
+
- 1 indicates the head is **not masked**,
|
| 861 |
+
- 0 indicates the head is **masked**.
|
| 862 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 863 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 864 |
+
config.n_positions - 1]`.
|
| 865 |
+
|
| 866 |
+
[What are position IDs?](../glossary#position-ids)
|
| 867 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 868 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 869 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 870 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 871 |
+
|
| 872 |
+
Two formats are allowed:
|
| 873 |
+
- a [`~cache_utils.Cache`] instance, see our
|
| 874 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
| 875 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 876 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 877 |
+
cache format.
|
| 878 |
+
|
| 879 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 880 |
+
legacy cache format will be returned.
|
| 881 |
+
|
| 882 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 883 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 884 |
+
of shape `(batch_size, sequence_length)`.
|
| 885 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 886 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 887 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 888 |
+
model's internal embedding lookup matrix.
|
| 889 |
+
use_cache (`bool`, *optional*):
|
| 890 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 891 |
+
`past_key_values`).
|
| 892 |
+
output_attentions (`bool`, *optional*):
|
| 893 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 894 |
+
tensors for more detail.
|
| 895 |
+
output_hidden_states (`bool`, *optional*):
|
| 896 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 897 |
+
more detail.
|
| 898 |
+
return_dict (`bool`, *optional*):
|
| 899 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 900 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 901 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 902 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 903 |
+
the complete sequence length.
|
| 904 |
+
"""
|
| 905 |
+
|
| 906 |
+
|
| 907 |
+
@add_start_docstrings(
|
| 908 |
+
"The bare Deepseek Model outputting raw hidden-states without any specific head on top.",
|
| 909 |
+
Deepseek_START_DOCSTRING,
|
| 910 |
+
)
|
| 911 |
+
class DeepseekModel(DeepseekPreTrainedModel):
|
| 912 |
+
"""
|
| 913 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekDecoderLayer`]
|
| 914 |
+
|
| 915 |
+
Args:
|
| 916 |
+
config: DeepseekConfig
|
| 917 |
+
"""
|
| 918 |
+
|
| 919 |
+
def __init__(self, config: DeepseekConfig):
|
| 920 |
+
super().__init__(config)
|
| 921 |
+
self.padding_idx = config.pad_token_id
|
| 922 |
+
self.vocab_size = config.vocab_size
|
| 923 |
+
|
| 924 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 925 |
+
self.layers = nn.ModuleList(
|
| 926 |
+
[DeepseekDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 927 |
+
)
|
| 928 |
+
self.norm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 929 |
+
self.rotary_emb = DeepseekRotaryEmbedding(config=config)
|
| 930 |
+
|
| 931 |
+
self.gradient_checkpointing = False
|
| 932 |
+
if getattr(config, "pretraining_tp", 1) != 1:
|
| 933 |
+
logger.warn("`pretraining_tp` is deprecated, please use `model.tensor_parallel` instead.")
|
| 934 |
+
|
| 935 |
+
# Initialize weights and apply final processing
|
| 936 |
+
self.post_init()
|
| 937 |
+
|
| 938 |
+
def get_input_embeddings(self):
|
| 939 |
+
return self.embed_tokens
|
| 940 |
+
|
| 941 |
+
def set_input_embeddings(self, value):
|
| 942 |
+
self.embed_tokens = value
|
| 943 |
+
|
| 944 |
+
@add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
|
| 945 |
+
def forward(
|
| 946 |
+
self,
|
| 947 |
+
input_ids: torch.LongTensor = None,
|
| 948 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 949 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 950 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 951 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 952 |
+
use_cache: Optional[bool] = None,
|
| 953 |
+
output_attentions: Optional[bool] = None,
|
| 954 |
+
output_hidden_states: Optional[bool] = None,
|
| 955 |
+
return_dict: Optional[bool] = None,
|
| 956 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 957 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
| 958 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 959 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 960 |
+
output_hidden_states = (
|
| 961 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 962 |
+
)
|
| 963 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 964 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 965 |
+
|
| 966 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 967 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 968 |
+
|
| 969 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 970 |
+
logger.warning_once(
|
| 971 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 972 |
+
)
|
| 973 |
+
use_cache = False
|
| 974 |
+
|
| 975 |
+
if inputs_embeds is None:
|
| 976 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 977 |
+
|
| 978 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
| 979 |
+
return_legacy_cache = False
|
| 980 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
| 981 |
+
return_legacy_cache = True
|
| 982 |
+
if past_key_values is None:
|
| 983 |
+
past_key_values = DynamicCache()
|
| 984 |
+
else:
|
| 985 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 986 |
+
logger.warning_once(
|
| 987 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
| 988 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
| 989 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
| 990 |
+
)
|
| 991 |
+
|
| 992 |
+
if cache_position is None:
|
| 993 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 994 |
+
cache_position = torch.arange(
|
| 995 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 996 |
+
)
|
| 997 |
+
if position_ids is None:
|
| 998 |
+
position_ids = cache_position.unsqueeze(0)
|
| 999 |
+
|
| 1000 |
+
causal_mask = self._update_causal_mask(
|
| 1001 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 1002 |
+
)
|
| 1003 |
+
hidden_states = inputs_embeds
|
| 1004 |
+
|
| 1005 |
+
# create position embeddings to be shared across the decoder layers
|
| 1006 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 1007 |
+
|
| 1008 |
+
# decoder layers
|
| 1009 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1010 |
+
all_self_attns = () if output_attentions else None
|
| 1011 |
+
next_decoder_cache = None
|
| 1012 |
+
|
| 1013 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 1014 |
+
if output_hidden_states:
|
| 1015 |
+
all_hidden_states += (hidden_states,)
|
| 1016 |
+
|
| 1017 |
+
if self.gradient_checkpointing and self.training:
|
| 1018 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1019 |
+
decoder_layer.__call__,
|
| 1020 |
+
hidden_states,
|
| 1021 |
+
causal_mask,
|
| 1022 |
+
position_ids,
|
| 1023 |
+
past_key_values,
|
| 1024 |
+
output_attentions,
|
| 1025 |
+
use_cache,
|
| 1026 |
+
cache_position,
|
| 1027 |
+
position_embeddings,
|
| 1028 |
+
)
|
| 1029 |
+
else:
|
| 1030 |
+
layer_outputs = decoder_layer(
|
| 1031 |
+
hidden_states,
|
| 1032 |
+
attention_mask=causal_mask,
|
| 1033 |
+
position_ids=position_ids,
|
| 1034 |
+
past_key_value=past_key_values,
|
| 1035 |
+
output_attentions=output_attentions,
|
| 1036 |
+
use_cache=use_cache,
|
| 1037 |
+
cache_position=cache_position,
|
| 1038 |
+
position_embeddings=position_embeddings,
|
| 1039 |
+
**flash_attn_kwargs,
|
| 1040 |
+
)
|
| 1041 |
+
|
| 1042 |
+
hidden_states = layer_outputs[0]
|
| 1043 |
+
|
| 1044 |
+
if use_cache:
|
| 1045 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1046 |
+
|
| 1047 |
+
if output_attentions:
|
| 1048 |
+
all_self_attns += (layer_outputs[1],)
|
| 1049 |
+
|
| 1050 |
+
hidden_states = self.norm(hidden_states)
|
| 1051 |
+
|
| 1052 |
+
# add hidden states from the last decoder layer
|
| 1053 |
+
if output_hidden_states:
|
| 1054 |
+
all_hidden_states += (hidden_states,)
|
| 1055 |
+
|
| 1056 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 1057 |
+
if return_legacy_cache:
|
| 1058 |
+
next_cache = next_cache.to_legacy_cache()
|
| 1059 |
+
|
| 1060 |
+
if not return_dict:
|
| 1061 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 1062 |
+
return BaseModelOutputWithPast(
|
| 1063 |
+
last_hidden_state=hidden_states,
|
| 1064 |
+
past_key_values=next_cache,
|
| 1065 |
+
hidden_states=all_hidden_states,
|
| 1066 |
+
attentions=all_self_attns,
|
| 1067 |
+
)
|
| 1068 |
+
|
| 1069 |
+
def _update_causal_mask(
|
| 1070 |
+
self,
|
| 1071 |
+
attention_mask: torch.Tensor,
|
| 1072 |
+
input_tensor: torch.Tensor,
|
| 1073 |
+
cache_position: torch.Tensor,
|
| 1074 |
+
past_key_values: Cache,
|
| 1075 |
+
output_attentions: bool,
|
| 1076 |
+
):
|
| 1077 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 1078 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 1079 |
+
return attention_mask
|
| 1080 |
+
return None
|
| 1081 |
+
|
| 1082 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 1083 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 1084 |
+
# to infer the attention mask.
|
| 1085 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1086 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 1087 |
+
|
| 1088 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 1089 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
| 1090 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1091 |
+
attention_mask,
|
| 1092 |
+
inputs_embeds=input_tensor,
|
| 1093 |
+
past_key_values_length=past_seen_tokens,
|
| 1094 |
+
is_training=self.training,
|
| 1095 |
+
):
|
| 1096 |
+
return None
|
| 1097 |
+
|
| 1098 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1099 |
+
sequence_length = input_tensor.shape[1]
|
| 1100 |
+
if using_static_cache:
|
| 1101 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 1102 |
+
else:
|
| 1103 |
+
target_length = (
|
| 1104 |
+
attention_mask.shape[-1]
|
| 1105 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 1106 |
+
else past_seen_tokens + sequence_length + 1
|
| 1107 |
+
)
|
| 1108 |
+
|
| 1109 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 1110 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 1111 |
+
attention_mask,
|
| 1112 |
+
sequence_length=sequence_length,
|
| 1113 |
+
target_length=target_length,
|
| 1114 |
+
dtype=dtype,
|
| 1115 |
+
device=device,
|
| 1116 |
+
cache_position=cache_position,
|
| 1117 |
+
batch_size=input_tensor.shape[0],
|
| 1118 |
+
)
|
| 1119 |
+
|
| 1120 |
+
if (
|
| 1121 |
+
self.config._attn_implementation == "sdpa"
|
| 1122 |
+
and attention_mask is not None
|
| 1123 |
+
and attention_mask.device.type == "cuda"
|
| 1124 |
+
and not output_attentions
|
| 1125 |
+
):
|
| 1126 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1127 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1128 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1129 |
+
min_dtype = torch.finfo(dtype).min
|
| 1130 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 1131 |
+
|
| 1132 |
+
return causal_mask
|
| 1133 |
+
|
| 1134 |
+
@staticmethod
|
| 1135 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1136 |
+
attention_mask: torch.Tensor,
|
| 1137 |
+
sequence_length: int,
|
| 1138 |
+
target_length: int,
|
| 1139 |
+
dtype: torch.dtype,
|
| 1140 |
+
device: torch.device,
|
| 1141 |
+
cache_position: torch.Tensor,
|
| 1142 |
+
batch_size: int,
|
| 1143 |
+
**kwargs,
|
| 1144 |
+
):
|
| 1145 |
+
"""
|
| 1146 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 1147 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 1148 |
+
|
| 1149 |
+
Args:
|
| 1150 |
+
attention_mask (`torch.Tensor`):
|
| 1151 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
| 1152 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
| 1153 |
+
sequence_length (`int`):
|
| 1154 |
+
The sequence length being processed.
|
| 1155 |
+
target_length (`int`):
|
| 1156 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
| 1157 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
| 1158 |
+
dtype (`torch.dtype`):
|
| 1159 |
+
The dtype to use for the 4D attention mask.
|
| 1160 |
+
device (`torch.device`):
|
| 1161 |
+
The device to plcae the 4D attention mask on.
|
| 1162 |
+
cache_position (`torch.Tensor`):
|
| 1163 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 1164 |
+
batch_size (`torch.Tensor`):
|
| 1165 |
+
Batch size.
|
| 1166 |
+
"""
|
| 1167 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 1168 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 1169 |
+
causal_mask = attention_mask
|
| 1170 |
+
else:
|
| 1171 |
+
min_dtype = torch.finfo(dtype).min
|
| 1172 |
+
causal_mask = torch.full(
|
| 1173 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
| 1174 |
+
)
|
| 1175 |
+
if sequence_length != 1:
|
| 1176 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1177 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 1178 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 1179 |
+
if attention_mask is not None:
|
| 1180 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 1181 |
+
mask_length = attention_mask.shape[-1]
|
| 1182 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 1183 |
+
padding_mask = padding_mask == 0
|
| 1184 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 1185 |
+
padding_mask, min_dtype
|
| 1186 |
+
)
|
| 1187 |
+
|
| 1188 |
+
return causal_mask
|
| 1189 |
+
|
| 1190 |
+
|
| 1191 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
| 1192 |
+
|
| 1193 |
+
|
| 1194 |
+
class DeepseekForCausalLM(DeepseekPreTrainedModel, GenerationMixin):
|
| 1195 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1196 |
+
|
| 1197 |
+
def __init__(self, config):
|
| 1198 |
+
super().__init__(config)
|
| 1199 |
+
self.model = DeepseekModel(config)
|
| 1200 |
+
self.vocab_size = config.vocab_size
|
| 1201 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1202 |
+
|
| 1203 |
+
# Initialize weights and apply final processing
|
| 1204 |
+
self.post_init()
|
| 1205 |
+
|
| 1206 |
+
def get_input_embeddings(self):
|
| 1207 |
+
return self.model.embed_tokens
|
| 1208 |
+
|
| 1209 |
+
def set_input_embeddings(self, value):
|
| 1210 |
+
self.model.embed_tokens = value
|
| 1211 |
+
|
| 1212 |
+
def get_output_embeddings(self):
|
| 1213 |
+
return self.lm_head
|
| 1214 |
+
|
| 1215 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1216 |
+
self.lm_head = new_embeddings
|
| 1217 |
+
|
| 1218 |
+
def set_decoder(self, decoder):
|
| 1219 |
+
self.model = decoder
|
| 1220 |
+
|
| 1221 |
+
def get_decoder(self):
|
| 1222 |
+
return self.model
|
| 1223 |
+
|
| 1224 |
+
@add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
|
| 1225 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1226 |
+
def forward(
|
| 1227 |
+
self,
|
| 1228 |
+
input_ids: torch.LongTensor = None,
|
| 1229 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1230 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1231 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1232 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1233 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1234 |
+
use_cache: Optional[bool] = None,
|
| 1235 |
+
output_attentions: Optional[bool] = None,
|
| 1236 |
+
output_hidden_states: Optional[bool] = None,
|
| 1237 |
+
return_dict: Optional[bool] = None,
|
| 1238 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1239 |
+
num_logits_to_keep: int = 0,
|
| 1240 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
| 1241 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1242 |
+
r"""
|
| 1243 |
+
Args:
|
| 1244 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1245 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1246 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1247 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1248 |
+
|
| 1249 |
+
num_logits_to_keep (`int`, *optional*):
|
| 1250 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
| 1251 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
| 1252 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 1253 |
+
|
| 1254 |
+
Returns:
|
| 1255 |
+
|
| 1256 |
+
Example:
|
| 1257 |
+
|
| 1258 |
+
```python
|
| 1259 |
+
>>> from transformers import AutoTokenizer
|
| 1260 |
+
|
| 1261 |
+
>>> model = DeepseekForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 1262 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 1263 |
+
|
| 1264 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1265 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1266 |
+
|
| 1267 |
+
>>> # Generate
|
| 1268 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1269 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1270 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1271 |
+
```"""
|
| 1272 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1273 |
+
output_hidden_states = (
|
| 1274 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1275 |
+
)
|
| 1276 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1277 |
+
|
| 1278 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1279 |
+
outputs = self.model(
|
| 1280 |
+
input_ids=input_ids,
|
| 1281 |
+
attention_mask=attention_mask,
|
| 1282 |
+
position_ids=position_ids,
|
| 1283 |
+
past_key_values=past_key_values,
|
| 1284 |
+
inputs_embeds=inputs_embeds,
|
| 1285 |
+
use_cache=use_cache,
|
| 1286 |
+
output_attentions=output_attentions,
|
| 1287 |
+
output_hidden_states=output_hidden_states,
|
| 1288 |
+
return_dict=return_dict,
|
| 1289 |
+
)
|
| 1290 |
+
|
| 1291 |
+
hidden_states = outputs[0]
|
| 1292 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 1293 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
| 1294 |
+
|
| 1295 |
+
loss = None
|
| 1296 |
+
if labels is not None:
|
| 1297 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
| 1298 |
+
|
| 1299 |
+
if not return_dict:
|
| 1300 |
+
output = (logits,) + outputs[1:]
|
| 1301 |
+
return (loss,) + output if loss is not None else output
|
| 1302 |
+
|
| 1303 |
+
return CausalLMOutputWithPast(
|
| 1304 |
+
loss=loss,
|
| 1305 |
+
logits=logits,
|
| 1306 |
+
past_key_values=outputs.past_key_values,
|
| 1307 |
+
hidden_states=outputs.hidden_states,
|
| 1308 |
+
attentions=outputs.attentions,
|
| 1309 |
+
)
|
| 1310 |
+
|
| 1311 |
+
|
| 1312 |
+
@add_start_docstrings(
|
| 1313 |
+
"""
|
| 1314 |
+
The Deepseek Model transformer with a sequence classification head on top (linear layer).
|
| 1315 |
+
|
| 1316 |
+
[`DeepseekForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1317 |
+
(e.g. GPT-2) do.
|
| 1318 |
+
|
| 1319 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1320 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1321 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1322 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1323 |
+
each row of the batch).
|
| 1324 |
+
""",
|
| 1325 |
+
Deepseek_START_DOCSTRING,
|
| 1326 |
+
)
|
| 1327 |
+
class DeepseekForSequenceClassification(DeepseekPreTrainedModel):
|
| 1328 |
+
def __init__(self, config):
|
| 1329 |
+
super().__init__(config)
|
| 1330 |
+
self.num_labels = config.num_labels
|
| 1331 |
+
self.model = DeepseekModel(config)
|
| 1332 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1333 |
+
|
| 1334 |
+
# Initialize weights and apply final processing
|
| 1335 |
+
self.post_init()
|
| 1336 |
+
|
| 1337 |
+
def get_input_embeddings(self):
|
| 1338 |
+
return self.model.embed_tokens
|
| 1339 |
+
|
| 1340 |
+
def set_input_embeddings(self, value):
|
| 1341 |
+
self.model.embed_tokens = value
|
| 1342 |
+
|
| 1343 |
+
@add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
|
| 1344 |
+
def forward(
|
| 1345 |
+
self,
|
| 1346 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1347 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1348 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1349 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1350 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1351 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1352 |
+
use_cache: Optional[bool] = None,
|
| 1353 |
+
output_attentions: Optional[bool] = None,
|
| 1354 |
+
output_hidden_states: Optional[bool] = None,
|
| 1355 |
+
return_dict: Optional[bool] = None,
|
| 1356 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1357 |
+
r"""
|
| 1358 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1359 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1360 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1361 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1362 |
+
"""
|
| 1363 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1364 |
+
|
| 1365 |
+
transformer_outputs = self.model(
|
| 1366 |
+
input_ids,
|
| 1367 |
+
attention_mask=attention_mask,
|
| 1368 |
+
position_ids=position_ids,
|
| 1369 |
+
past_key_values=past_key_values,
|
| 1370 |
+
inputs_embeds=inputs_embeds,
|
| 1371 |
+
use_cache=use_cache,
|
| 1372 |
+
output_attentions=output_attentions,
|
| 1373 |
+
output_hidden_states=output_hidden_states,
|
| 1374 |
+
return_dict=return_dict,
|
| 1375 |
+
)
|
| 1376 |
+
hidden_states = transformer_outputs[0]
|
| 1377 |
+
logits = self.score(hidden_states)
|
| 1378 |
+
|
| 1379 |
+
if input_ids is not None:
|
| 1380 |
+
batch_size = input_ids.shape[0]
|
| 1381 |
+
else:
|
| 1382 |
+
batch_size = inputs_embeds.shape[0]
|
| 1383 |
+
|
| 1384 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1385 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 1386 |
+
if self.config.pad_token_id is None:
|
| 1387 |
+
sequence_lengths = -1
|
| 1388 |
+
else:
|
| 1389 |
+
if input_ids is not None:
|
| 1390 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1391 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1392 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1393 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1394 |
+
else:
|
| 1395 |
+
sequence_lengths = -1
|
| 1396 |
+
|
| 1397 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1398 |
+
|
| 1399 |
+
loss = None
|
| 1400 |
+
if labels is not None:
|
| 1401 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
| 1402 |
+
|
| 1403 |
+
if not return_dict:
|
| 1404 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1405 |
+
return ((loss,) + output) if loss is not None else output
|
| 1406 |
+
|
| 1407 |
+
return SequenceClassifierOutputWithPast(
|
| 1408 |
+
loss=loss,
|
| 1409 |
+
logits=pooled_logits,
|
| 1410 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1411 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1412 |
+
attentions=transformer_outputs.attentions,
|
| 1413 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|role_sep|>",
|
| 4 |
+
"<|message_sep|>",
|
| 5 |
+
"[",
|
| 6 |
+
"]",
|
| 7 |
+
{
|
| 8 |
+
"content": "<|role_sep|>",
|
| 9 |
+
"lstrip": false,
|
| 10 |
+
"normalized": false,
|
| 11 |
+
"rstrip": false,
|
| 12 |
+
"single_word": false
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"content": "<|message_sep|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"content": "[",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"content": "]",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false
|
| 34 |
+
}
|
| 35 |
+
],
|
| 36 |
+
"bos_token": {
|
| 37 |
+
"content": "<s>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false
|
| 42 |
+
},
|
| 43 |
+
"eos_token": {
|
| 44 |
+
"content": "<|message_sep|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false
|
| 49 |
+
}
|
| 50 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6fc8146adda45ec7f4876d832f80b55e8dd3e1fa648fbd54d059a601ee73cea3
|
| 3 |
+
size 10678892
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens": {
|
| 3 |
+
"1": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"128000": {
|
| 12 |
+
"content": "<|role_sep|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"128001": {
|
| 20 |
+
"content": "<|message_sep|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"61": {
|
| 28 |
+
"content": "[",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"63": {
|
| 36 |
+
"content": "]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"added_tokens_decoder": {
|
| 45 |
+
"1": {
|
| 46 |
+
"content": "<s>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"61": {
|
| 54 |
+
"content": "[",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"63": {
|
| 62 |
+
"content": "]",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"128000": {
|
| 70 |
+
"content": "<|role_sep|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"128001": {
|
| 78 |
+
"content": "<|message_sep|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
}
|
| 85 |
+
},
|
| 86 |
+
"additional_special_tokens": [
|
| 87 |
+
"<|role_sep|>",
|
| 88 |
+
"<|message_sep|>",
|
| 89 |
+
"[",
|
| 90 |
+
"]",
|
| 91 |
+
"<|role_sep|>",
|
| 92 |
+
"<|message_sep|>",
|
| 93 |
+
"[",
|
| 94 |
+
"]"
|
| 95 |
+
],
|
| 96 |
+
"bos_token": "<s>",
|
| 97 |
+
"chat_template": "{% if messages[0]['role'] == 'system' -%}\n {%- set loop_messages = messages[1:] -%}\n {%- set system_message = bos_token + messages[0]['content'] + additional_special_tokens[1] -%}\n{%- else -%}\n {%- set loop_messages = messages -%}\n {%- set system_message = bos_token + '' -%}\n{%- endif -%}\n{%- for message in loop_messages %}\n {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}\n {% endif %}\n \n {%- if loop.index0 == 0 -%}\n {{ system_message -}}\n {%- endif -%}\n {%- if message['role'] == 'user' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {{ 'available functions' + additional_special_tokens[0] + additional_special_tokens[2] + additional_special_tokens[3] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if message['role'] == 'assistant' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if loop.last and add_generation_prompt -%}\n {{ 'assistant' + additional_special_tokens[0] -}}\n {%- endif -%}\n{%- endfor %}",
|
| 98 |
+
"clean_up_tokenization_spaces": true,
|
| 99 |
+
"eos_token": "<|message_sep|>",
|
| 100 |
+
"extra_special_tokens": {},
|
| 101 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 102 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 103 |
+
"unk_token": null
|
| 104 |
+
}
|