Upload folder using huggingface_hub
Browse files- README.md +202 -0
- adapter_config.json +36 -0
- adapter_model.bin +3 -0
- latest +1 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- trainer_state.json +2133 -0
- zero_to_fp32.py +674 -0
README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: meta-llama/Llama-3.1-8B
|
| 3 |
+
library_name: peft
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.13.2
|
adapter_config.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "meta-llama/Llama-3.1-8B",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 64,
|
| 14 |
+
"lora_dropout": 0.1,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": [
|
| 18 |
+
"classifier",
|
| 19 |
+
"score"
|
| 20 |
+
],
|
| 21 |
+
"peft_type": "LORA",
|
| 22 |
+
"r": 32,
|
| 23 |
+
"rank_pattern": {},
|
| 24 |
+
"revision": null,
|
| 25 |
+
"target_modules": [
|
| 26 |
+
"o_proj",
|
| 27 |
+
"q_proj",
|
| 28 |
+
"down_proj",
|
| 29 |
+
"up_proj",
|
| 30 |
+
"gate_proj",
|
| 31 |
+
"v_proj"
|
| 32 |
+
],
|
| 33 |
+
"task_type": "SEQ_CLS",
|
| 34 |
+
"use_dora": false,
|
| 35 |
+
"use_rslora": false
|
| 36 |
+
}
|
adapter_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:275e634fb50f6c12e49354f2bf2d1ff9aa62711506bae1bec3471abd4951f5b4
|
| 3 |
+
size 157428238
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step3000
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f26e041487167f77da21a2ac72855409f196531836f793417f7ca7d8d5ab9fe8
|
| 3 |
+
size 14512
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:60d5c6269a50366efa7d074b57043dcb5eacf969ecd38235288b84c61e372e87
|
| 3 |
+
size 14512
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.11976526009022316,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 3000,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0003992175336340772,
|
| 13 |
+
"grad_norm": 19.85781045879126,
|
| 14 |
+
"learning_rate": 2.7028212426954458e-05,
|
| 15 |
+
"loss": 0.8612,
|
| 16 |
+
"step": 10
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.0007984350672681544,
|
| 20 |
+
"grad_norm": 19.882645890181408,
|
| 21 |
+
"learning_rate": 3.516451509664572e-05,
|
| 22 |
+
"loss": 0.7978,
|
| 23 |
+
"step": 20
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.0011976526009022316,
|
| 27 |
+
"grad_norm": 9.094846045432918,
|
| 28 |
+
"learning_rate": 3.992394705293254e-05,
|
| 29 |
+
"loss": 0.7084,
|
| 30 |
+
"step": 30
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.0015968701345363088,
|
| 34 |
+
"grad_norm": 8.935490690487004,
|
| 35 |
+
"learning_rate": 4.330081776633698e-05,
|
| 36 |
+
"loss": 0.4791,
|
| 37 |
+
"step": 40
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.001996087668170386,
|
| 41 |
+
"grad_norm": 10.34774048559344,
|
| 42 |
+
"learning_rate": 4.592012218421765e-05,
|
| 43 |
+
"loss": 0.3076,
|
| 44 |
+
"step": 50
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.0023953052018044632,
|
| 48 |
+
"grad_norm": 5.330934607110759,
|
| 49 |
+
"learning_rate": 4.80602497226238e-05,
|
| 50 |
+
"loss": 0.292,
|
| 51 |
+
"step": 60
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.0027945227354385406,
|
| 55 |
+
"grad_norm": 23.54140808901255,
|
| 56 |
+
"learning_rate": 4.9869701774062655e-05,
|
| 57 |
+
"loss": 0.2312,
|
| 58 |
+
"step": 70
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.0031937402690726175,
|
| 62 |
+
"grad_norm": 17.28505020343765,
|
| 63 |
+
"learning_rate": 5.143712043602824e-05,
|
| 64 |
+
"loss": 0.2473,
|
| 65 |
+
"step": 80
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.003592957802706695,
|
| 69 |
+
"grad_norm": 24.762507669029908,
|
| 70 |
+
"learning_rate": 5.281968167891063e-05,
|
| 71 |
+
"loss": 0.2292,
|
| 72 |
+
"step": 90
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.003992175336340772,
|
| 76 |
+
"grad_norm": 10.968261437457826,
|
| 77 |
+
"learning_rate": 5.4056424853908915e-05,
|
| 78 |
+
"loss": 0.1577,
|
| 79 |
+
"step": 100
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.004391392869974849,
|
| 83 |
+
"grad_norm": 0.7358009926776751,
|
| 84 |
+
"learning_rate": 5.5175195141287474e-05,
|
| 85 |
+
"loss": 0.1377,
|
| 86 |
+
"step": 110
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.0047906104036089265,
|
| 90 |
+
"grad_norm": 2.6196353846553566,
|
| 91 |
+
"learning_rate": 5.619655239231506e-05,
|
| 92 |
+
"loss": 0.096,
|
| 93 |
+
"step": 120
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.005189827937243004,
|
| 97 |
+
"grad_norm": 4.457945145184635,
|
| 98 |
+
"learning_rate": 5.7136109984697405e-05,
|
| 99 |
+
"loss": 0.1624,
|
| 100 |
+
"step": 130
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.005589045470877081,
|
| 104 |
+
"grad_norm": 5.730548083937804,
|
| 105 |
+
"learning_rate": 5.8006004443753904e-05,
|
| 106 |
+
"loss": 0.1062,
|
| 107 |
+
"step": 140
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.0059882630045111586,
|
| 111 |
+
"grad_norm": 11.523201996978061,
|
| 112 |
+
"learning_rate": 5.8815856810195735e-05,
|
| 113 |
+
"loss": 0.2052,
|
| 114 |
+
"step": 150
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.006387480538145235,
|
| 118 |
+
"grad_norm": 0.8091674882450949,
|
| 119 |
+
"learning_rate": 5.957342310571951e-05,
|
| 120 |
+
"loss": 0.1584,
|
| 121 |
+
"step": 160
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.006786698071779312,
|
| 125 |
+
"grad_norm": 1.0227188199759876,
|
| 126 |
+
"learning_rate": 6.028504725448343e-05,
|
| 127 |
+
"loss": 0.131,
|
| 128 |
+
"step": 170
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.00718591560541339,
|
| 132 |
+
"grad_norm": 8.25751680884371,
|
| 133 |
+
"learning_rate": 6.095598434860189e-05,
|
| 134 |
+
"loss": 0.1698,
|
| 135 |
+
"step": 180
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.007585133139047467,
|
| 139 |
+
"grad_norm": 0.587472316727206,
|
| 140 |
+
"learning_rate": 6.159063639524046e-05,
|
| 141 |
+
"loss": 0.0801,
|
| 142 |
+
"step": 190
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.007984350672681544,
|
| 146 |
+
"grad_norm": 1.91099848144843,
|
| 147 |
+
"learning_rate": 6.219272752360016e-05,
|
| 148 |
+
"loss": 0.2088,
|
| 149 |
+
"step": 200
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.008383568206315622,
|
| 153 |
+
"grad_norm": 4.47604298858692,
|
| 154 |
+
"learning_rate": 6.276543640004074e-05,
|
| 155 |
+
"loss": 0.214,
|
| 156 |
+
"step": 210
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.008782785739949698,
|
| 160 |
+
"grad_norm": 4.502483070458412,
|
| 161 |
+
"learning_rate": 6.331149781097874e-05,
|
| 162 |
+
"loss": 0.101,
|
| 163 |
+
"step": 220
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.009182003273583777,
|
| 167 |
+
"grad_norm": 1.079585989368236,
|
| 168 |
+
"learning_rate": 6.383328164653496e-05,
|
| 169 |
+
"loss": 0.0536,
|
| 170 |
+
"step": 230
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.009581220807217853,
|
| 174 |
+
"grad_norm": 2.160781559557002,
|
| 175 |
+
"learning_rate": 6.433285506200633e-05,
|
| 176 |
+
"loss": 0.1073,
|
| 177 |
+
"step": 240
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.00998043834085193,
|
| 181 |
+
"grad_norm": 1.2451244100698013,
|
| 182 |
+
"learning_rate": 6.481203194148085e-05,
|
| 183 |
+
"loss": 0.0587,
|
| 184 |
+
"step": 250
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.010379655874486008,
|
| 188 |
+
"grad_norm": 1.2141713778196777,
|
| 189 |
+
"learning_rate": 6.527241265438867e-05,
|
| 190 |
+
"loss": 0.0979,
|
| 191 |
+
"step": 260
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.010778873408120084,
|
| 195 |
+
"grad_norm": 0.4009094506871956,
|
| 196 |
+
"learning_rate": 6.57154163048887e-05,
|
| 197 |
+
"loss": 0.0874,
|
| 198 |
+
"step": 270
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.011178090941754162,
|
| 202 |
+
"grad_norm": 0.8911240034837602,
|
| 203 |
+
"learning_rate": 6.614230711344517e-05,
|
| 204 |
+
"loss": 0.1043,
|
| 205 |
+
"step": 280
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.011577308475388239,
|
| 209 |
+
"grad_norm": 0.807314642103107,
|
| 210 |
+
"learning_rate": 6.655421616692034e-05,
|
| 211 |
+
"loss": 0.0834,
|
| 212 |
+
"step": 290
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.011976526009022317,
|
| 216 |
+
"grad_norm": 0.5194314428720426,
|
| 217 |
+
"learning_rate": 6.6952159479887e-05,
|
| 218 |
+
"loss": 0.161,
|
| 219 |
+
"step": 300
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.012375743542656394,
|
| 223 |
+
"grad_norm": 4.705567502700896,
|
| 224 |
+
"learning_rate": 6.733705309332979e-05,
|
| 225 |
+
"loss": 0.1208,
|
| 226 |
+
"step": 310
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.01277496107629047,
|
| 230 |
+
"grad_norm": 1.4163866939154937,
|
| 231 |
+
"learning_rate": 6.770972577541077e-05,
|
| 232 |
+
"loss": 0.0435,
|
| 233 |
+
"step": 320
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.013174178609924548,
|
| 237 |
+
"grad_norm": 2.9342139394642035,
|
| 238 |
+
"learning_rate": 6.807092976726554e-05,
|
| 239 |
+
"loss": 0.0686,
|
| 240 |
+
"step": 330
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.013573396143558625,
|
| 244 |
+
"grad_norm": 4.76683147201656,
|
| 245 |
+
"learning_rate": 6.842134992417469e-05,
|
| 246 |
+
"loss": 0.0791,
|
| 247 |
+
"step": 340
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.013972613677192703,
|
| 251 |
+
"grad_norm": 2.8527837428746294,
|
| 252 |
+
"learning_rate": 6.876161153132584e-05,
|
| 253 |
+
"loss": 0.086,
|
| 254 |
+
"step": 350
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.01437183121082678,
|
| 258 |
+
"grad_norm": 0.3845524480091741,
|
| 259 |
+
"learning_rate": 6.909228701829316e-05,
|
| 260 |
+
"loss": 0.1051,
|
| 261 |
+
"step": 360
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.014771048744460856,
|
| 265 |
+
"grad_norm": 4.410564236686768,
|
| 266 |
+
"learning_rate": 6.941390175335342e-05,
|
| 267 |
+
"loss": 0.0703,
|
| 268 |
+
"step": 370
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.015170266278094934,
|
| 272 |
+
"grad_norm": 0.9740892631024635,
|
| 273 |
+
"learning_rate": 6.972693906493173e-05,
|
| 274 |
+
"loss": 0.0624,
|
| 275 |
+
"step": 380
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.01556948381172901,
|
| 279 |
+
"grad_norm": 3.0544470063015607,
|
| 280 |
+
"learning_rate": 7.003184461067549e-05,
|
| 281 |
+
"loss": 0.0736,
|
| 282 |
+
"step": 390
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.015968701345363087,
|
| 286 |
+
"grad_norm": 0.41639345834318137,
|
| 287 |
+
"learning_rate": 7.032903019329144e-05,
|
| 288 |
+
"loss": 0.1053,
|
| 289 |
+
"step": 400
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.016367918878997165,
|
| 293 |
+
"grad_norm": 6.743718794059417,
|
| 294 |
+
"learning_rate": 7.061887710513835e-05,
|
| 295 |
+
"loss": 0.0689,
|
| 296 |
+
"step": 410
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.016767136412631244,
|
| 300 |
+
"grad_norm": 1.00073139371301,
|
| 301 |
+
"learning_rate": 7.0901739069732e-05,
|
| 302 |
+
"loss": 0.0474,
|
| 303 |
+
"step": 420
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.01716635394626532,
|
| 307 |
+
"grad_norm": 2.799355054285757,
|
| 308 |
+
"learning_rate": 7.117794483708874e-05,
|
| 309 |
+
"loss": 0.0747,
|
| 310 |
+
"step": 430
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.017565571479899397,
|
| 314 |
+
"grad_norm": 3.603772769563174,
|
| 315 |
+
"learning_rate": 7.144780048066999e-05,
|
| 316 |
+
"loss": 0.0913,
|
| 317 |
+
"step": 440
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.017964789013533475,
|
| 321 |
+
"grad_norm": 0.49569502418002975,
|
| 322 |
+
"learning_rate": 7.171159143617382e-05,
|
| 323 |
+
"loss": 0.055,
|
| 324 |
+
"step": 450
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.018364006547167553,
|
| 328 |
+
"grad_norm": 0.2783746184212658,
|
| 329 |
+
"learning_rate": 7.196958431622622e-05,
|
| 330 |
+
"loss": 0.072,
|
| 331 |
+
"step": 460
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.018763224080801628,
|
| 335 |
+
"grad_norm": 0.42607556365268057,
|
| 336 |
+
"learning_rate": 7.222202852989654e-05,
|
| 337 |
+
"loss": 0.1137,
|
| 338 |
+
"step": 470
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.019162441614435706,
|
| 342 |
+
"grad_norm": 0.4064736743213967,
|
| 343 |
+
"learning_rate": 7.246915773169759e-05,
|
| 344 |
+
"loss": 0.0695,
|
| 345 |
+
"step": 480
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.019561659148069784,
|
| 349 |
+
"grad_norm": 0.9397768981809936,
|
| 350 |
+
"learning_rate": 7.271119112117084e-05,
|
| 351 |
+
"loss": 0.0932,
|
| 352 |
+
"step": 490
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.01996087668170386,
|
| 356 |
+
"grad_norm": 3.6579870512864274,
|
| 357 |
+
"learning_rate": 7.294833461117211e-05,
|
| 358 |
+
"loss": 0.0689,
|
| 359 |
+
"step": 500
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.020360094215337937,
|
| 363 |
+
"grad_norm": 2.096579140979539,
|
| 364 |
+
"learning_rate": 7.318078188046151e-05,
|
| 365 |
+
"loss": 0.0848,
|
| 366 |
+
"step": 510
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.020759311748972015,
|
| 370 |
+
"grad_norm": 0.928087775020366,
|
| 371 |
+
"learning_rate": 7.340871532407993e-05,
|
| 372 |
+
"loss": 0.0572,
|
| 373 |
+
"step": 520
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.021158529282606094,
|
| 377 |
+
"grad_norm": 4.446858720966493,
|
| 378 |
+
"learning_rate": 7.363230691319621e-05,
|
| 379 |
+
"loss": 0.0872,
|
| 380 |
+
"step": 530
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.02155774681624017,
|
| 384 |
+
"grad_norm": 1.328344056531029,
|
| 385 |
+
"learning_rate": 7.385171897457998e-05,
|
| 386 |
+
"loss": 0.1129,
|
| 387 |
+
"step": 540
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.021956964349874247,
|
| 391 |
+
"grad_norm": 0.35804452540240167,
|
| 392 |
+
"learning_rate": 7.406710489855066e-05,
|
| 393 |
+
"loss": 0.1162,
|
| 394 |
+
"step": 550
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.022356181883508325,
|
| 398 |
+
"grad_norm": 0.6051847155052836,
|
| 399 |
+
"learning_rate": 7.427860978313643e-05,
|
| 400 |
+
"loss": 0.0588,
|
| 401 |
+
"step": 560
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.0227553994171424,
|
| 405 |
+
"grad_norm": 2.29458938702116,
|
| 406 |
+
"learning_rate": 7.448637102121855e-05,
|
| 407 |
+
"loss": 0.1602,
|
| 408 |
+
"step": 570
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.023154616950776478,
|
| 412 |
+
"grad_norm": 1.2097365397485473,
|
| 413 |
+
"learning_rate": 7.46905188366116e-05,
|
| 414 |
+
"loss": 0.1042,
|
| 415 |
+
"step": 580
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.023553834484410556,
|
| 419 |
+
"grad_norm": 0.7262308596218504,
|
| 420 |
+
"learning_rate": 7.489117677431795e-05,
|
| 421 |
+
"loss": 0.0738,
|
| 422 |
+
"step": 590
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.023953052018044634,
|
| 426 |
+
"grad_norm": 0.9117785252438455,
|
| 427 |
+
"learning_rate": 7.508846214957826e-05,
|
| 428 |
+
"loss": 0.0791,
|
| 429 |
+
"step": 600
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.02435226955167871,
|
| 433 |
+
"grad_norm": 1.6484189852015583,
|
| 434 |
+
"learning_rate": 7.528248645980503e-05,
|
| 435 |
+
"loss": 0.0642,
|
| 436 |
+
"step": 610
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.024751487085312787,
|
| 440 |
+
"grad_norm": 2.6615882255939907,
|
| 441 |
+
"learning_rate": 7.547335576302105e-05,
|
| 442 |
+
"loss": 0.1194,
|
| 443 |
+
"step": 620
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.025150704618946865,
|
| 447 |
+
"grad_norm": 0.8346103246891559,
|
| 448 |
+
"learning_rate": 7.566117102601882e-05,
|
| 449 |
+
"loss": 0.0638,
|
| 450 |
+
"step": 630
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.02554992215258094,
|
| 454 |
+
"grad_norm": 3.174551708543591,
|
| 455 |
+
"learning_rate": 7.584602844510203e-05,
|
| 456 |
+
"loss": 0.0926,
|
| 457 |
+
"step": 640
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.02594913968621502,
|
| 461 |
+
"grad_norm": 1.879296095806724,
|
| 462 |
+
"learning_rate": 7.60280197419606e-05,
|
| 463 |
+
"loss": 0.0787,
|
| 464 |
+
"step": 650
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.026348357219849097,
|
| 468 |
+
"grad_norm": 0.39642282227270165,
|
| 469 |
+
"learning_rate": 7.62072324369568e-05,
|
| 470 |
+
"loss": 0.0602,
|
| 471 |
+
"step": 660
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.02674757475348317,
|
| 475 |
+
"grad_norm": 1.0281650863378988,
|
| 476 |
+
"learning_rate": 7.638375010186134e-05,
|
| 477 |
+
"loss": 0.1164,
|
| 478 |
+
"step": 670
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.02714679228711725,
|
| 482 |
+
"grad_norm": 0.23324571822799267,
|
| 483 |
+
"learning_rate": 7.655765259386594e-05,
|
| 484 |
+
"loss": 0.0585,
|
| 485 |
+
"step": 680
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.027546009820751328,
|
| 489 |
+
"grad_norm": 2.602214827786925,
|
| 490 |
+
"learning_rate": 7.672901627251304e-05,
|
| 491 |
+
"loss": 0.0614,
|
| 492 |
+
"step": 690
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.027945227354385406,
|
| 496 |
+
"grad_norm": 1.1814042832377207,
|
| 497 |
+
"learning_rate": 7.689791420101711e-05,
|
| 498 |
+
"loss": 0.0889,
|
| 499 |
+
"step": 700
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.02834444488801948,
|
| 503 |
+
"grad_norm": 1.1260525545149151,
|
| 504 |
+
"learning_rate": 7.706441633330655e-05,
|
| 505 |
+
"loss": 0.0493,
|
| 506 |
+
"step": 710
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.02874366242165356,
|
| 510 |
+
"grad_norm": 0.9772468975665439,
|
| 511 |
+
"learning_rate": 7.722858968798441e-05,
|
| 512 |
+
"loss": 0.0817,
|
| 513 |
+
"step": 720
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.029142879955287637,
|
| 517 |
+
"grad_norm": 0.7893326781926734,
|
| 518 |
+
"learning_rate": 7.739049851029049e-05,
|
| 519 |
+
"loss": 0.0594,
|
| 520 |
+
"step": 730
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.029542097488921712,
|
| 524 |
+
"grad_norm": 1.17044118759658,
|
| 525 |
+
"learning_rate": 7.755020442304467e-05,
|
| 526 |
+
"loss": 0.1009,
|
| 527 |
+
"step": 740
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.02994131502255579,
|
| 531 |
+
"grad_norm": 1.2944195265483465,
|
| 532 |
+
"learning_rate": 7.770776656745893e-05,
|
| 533 |
+
"loss": 0.0716,
|
| 534 |
+
"step": 750
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.03034053255618987,
|
| 538 |
+
"grad_norm": 0.25418619189738,
|
| 539 |
+
"learning_rate": 7.7863241734623e-05,
|
| 540 |
+
"loss": 0.0571,
|
| 541 |
+
"step": 760
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.030739750089823947,
|
| 545 |
+
"grad_norm": 0.20365098448653787,
|
| 546 |
+
"learning_rate": 7.801668448839566e-05,
|
| 547 |
+
"loss": 0.0633,
|
| 548 |
+
"step": 770
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.03113896762345802,
|
| 552 |
+
"grad_norm": 0.45663176305105035,
|
| 553 |
+
"learning_rate": 7.816814728036675e-05,
|
| 554 |
+
"loss": 0.1258,
|
| 555 |
+
"step": 780
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.0315381851570921,
|
| 559 |
+
"grad_norm": 2.1824315856202383,
|
| 560 |
+
"learning_rate": 7.831768055749621e-05,
|
| 561 |
+
"loss": 0.0752,
|
| 562 |
+
"step": 790
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.031937402690726174,
|
| 566 |
+
"grad_norm": 0.8260546225743964,
|
| 567 |
+
"learning_rate": 7.84653328629827e-05,
|
| 568 |
+
"loss": 0.0813,
|
| 569 |
+
"step": 800
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.032336620224360256,
|
| 573 |
+
"grad_norm": 2.0810842739820714,
|
| 574 |
+
"learning_rate": 7.861115093086679e-05,
|
| 575 |
+
"loss": 0.0565,
|
| 576 |
+
"step": 810
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.03273583775799433,
|
| 580 |
+
"grad_norm": 1.2546576105110292,
|
| 581 |
+
"learning_rate": 7.87551797748296e-05,
|
| 582 |
+
"loss": 0.1007,
|
| 583 |
+
"step": 820
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.033135055291628406,
|
| 587 |
+
"grad_norm": 0.6627056918627381,
|
| 588 |
+
"learning_rate": 7.889746277160951e-05,
|
| 589 |
+
"loss": 0.0553,
|
| 590 |
+
"step": 830
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.03353427282526249,
|
| 594 |
+
"grad_norm": 2.540953740571159,
|
| 595 |
+
"learning_rate": 7.903804173942325e-05,
|
| 596 |
+
"loss": 0.0796,
|
| 597 |
+
"step": 840
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.03393349035889656,
|
| 601 |
+
"grad_norm": 2.50083933812989,
|
| 602 |
+
"learning_rate": 7.917695701174663e-05,
|
| 603 |
+
"loss": 0.1192,
|
| 604 |
+
"step": 850
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.03433270789253064,
|
| 608 |
+
"grad_norm": 0.4101172295177441,
|
| 609 |
+
"learning_rate": 7.931424750678e-05,
|
| 610 |
+
"loss": 0.0846,
|
| 611 |
+
"step": 860
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.03473192542616472,
|
| 615 |
+
"grad_norm": 3.3827204370144104,
|
| 616 |
+
"learning_rate": 7.944995079289842e-05,
|
| 617 |
+
"loss": 0.0982,
|
| 618 |
+
"step": 870
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.03513114295979879,
|
| 622 |
+
"grad_norm": 0.852766983972299,
|
| 623 |
+
"learning_rate": 7.958410315036126e-05,
|
| 624 |
+
"loss": 0.0654,
|
| 625 |
+
"step": 880
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.035530360493432875,
|
| 629 |
+
"grad_norm": 0.28616682842501945,
|
| 630 |
+
"learning_rate": 7.971673962953532e-05,
|
| 631 |
+
"loss": 0.0729,
|
| 632 |
+
"step": 890
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.03592957802706695,
|
| 636 |
+
"grad_norm": 1.5774662264412462,
|
| 637 |
+
"learning_rate": 7.984789410586508e-05,
|
| 638 |
+
"loss": 0.0732,
|
| 639 |
+
"step": 900
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.036328795560701024,
|
| 643 |
+
"grad_norm": 0.38963613236731504,
|
| 644 |
+
"learning_rate": 7.99775993318056e-05,
|
| 645 |
+
"loss": 0.0998,
|
| 646 |
+
"step": 910
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.036728013094335106,
|
| 650 |
+
"grad_norm": 0.41983097281121634,
|
| 651 |
+
"learning_rate": 8.010588698591749e-05,
|
| 652 |
+
"loss": 0.0805,
|
| 653 |
+
"step": 920
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.03712723062796918,
|
| 657 |
+
"grad_norm": 0.338747268427734,
|
| 658 |
+
"learning_rate": 8.023278771930787e-05,
|
| 659 |
+
"loss": 0.0686,
|
| 660 |
+
"step": 930
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.037526448161603256,
|
| 664 |
+
"grad_norm": 2.285289873559961,
|
| 665 |
+
"learning_rate": 8.035833119958781e-05,
|
| 666 |
+
"loss": 0.0756,
|
| 667 |
+
"step": 940
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.03792566569523734,
|
| 671 |
+
"grad_norm": 0.7484525000680983,
|
| 672 |
+
"learning_rate": 8.048254615250367e-05,
|
| 673 |
+
"loss": 0.0824,
|
| 674 |
+
"step": 950
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.03832488322887141,
|
| 678 |
+
"grad_norm": 0.6877391029510214,
|
| 679 |
+
"learning_rate": 8.060546040138885e-05,
|
| 680 |
+
"loss": 0.1115,
|
| 681 |
+
"step": 960
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.03872410076250549,
|
| 685 |
+
"grad_norm": 3.34429646318092,
|
| 686 |
+
"learning_rate": 8.072710090457124e-05,
|
| 687 |
+
"loss": 0.114,
|
| 688 |
+
"step": 970
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.03912331829613957,
|
| 692 |
+
"grad_norm": 0.5091173852862666,
|
| 693 |
+
"learning_rate": 8.084749379086209e-05,
|
| 694 |
+
"loss": 0.0751,
|
| 695 |
+
"step": 980
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.03952253582977364,
|
| 699 |
+
"grad_norm": 0.7224047967736694,
|
| 700 |
+
"learning_rate": 8.096666439324362e-05,
|
| 701 |
+
"loss": 0.0717,
|
| 702 |
+
"step": 990
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.03992175336340772,
|
| 706 |
+
"grad_norm": 0.4146459011309395,
|
| 707 |
+
"learning_rate": 8.108463728086336e-05,
|
| 708 |
+
"loss": 0.0975,
|
| 709 |
+
"step": 1000
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.0403209708970418,
|
| 713 |
+
"grad_norm": 0.3482393432492753,
|
| 714 |
+
"learning_rate": 8.120143628943691e-05,
|
| 715 |
+
"loss": 0.057,
|
| 716 |
+
"step": 1010
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.040720188430675874,
|
| 720 |
+
"grad_norm": 2.9920581278472267,
|
| 721 |
+
"learning_rate": 8.131708455015276e-05,
|
| 722 |
+
"loss": 0.0762,
|
| 723 |
+
"step": 1020
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.04111940596430995,
|
| 727 |
+
"grad_norm": 1.0871148234026047,
|
| 728 |
+
"learning_rate": 8.143160451716731e-05,
|
| 729 |
+
"loss": 0.0711,
|
| 730 |
+
"step": 1030
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.04151862349794403,
|
| 734 |
+
"grad_norm": 0.7656470221828197,
|
| 735 |
+
"learning_rate": 8.15450179937712e-05,
|
| 736 |
+
"loss": 0.07,
|
| 737 |
+
"step": 1040
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.041917841031578106,
|
| 741 |
+
"grad_norm": 1.134395887081975,
|
| 742 |
+
"learning_rate": 8.165734615730393e-05,
|
| 743 |
+
"loss": 0.0574,
|
| 744 |
+
"step": 1050
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.04231705856521219,
|
| 748 |
+
"grad_norm": 0.28513287710915014,
|
| 749 |
+
"learning_rate": 8.176860958288747e-05,
|
| 750 |
+
"loss": 0.0714,
|
| 751 |
+
"step": 1060
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.04271627609884626,
|
| 755 |
+
"grad_norm": 0.4929994620467896,
|
| 756 |
+
"learning_rate": 8.187882826604561e-05,
|
| 757 |
+
"loss": 0.0744,
|
| 758 |
+
"step": 1070
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.04311549363248034,
|
| 762 |
+
"grad_norm": 2.26376869173837,
|
| 763 |
+
"learning_rate": 8.198802164427124e-05,
|
| 764 |
+
"loss": 0.0753,
|
| 765 |
+
"step": 1080
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.04351471116611442,
|
| 769 |
+
"grad_norm": 1.0769524498013112,
|
| 770 |
+
"learning_rate": 8.209620861759952e-05,
|
| 771 |
+
"loss": 0.0825,
|
| 772 |
+
"step": 1090
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.04391392869974849,
|
| 776 |
+
"grad_norm": 0.19856366308280235,
|
| 777 |
+
"learning_rate": 8.220340756824192e-05,
|
| 778 |
+
"loss": 0.0575,
|
| 779 |
+
"step": 1100
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.04431314623338257,
|
| 783 |
+
"grad_norm": 1.5972492667518492,
|
| 784 |
+
"learning_rate": 8.23096363793315e-05,
|
| 785 |
+
"loss": 0.0686,
|
| 786 |
+
"step": 1110
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.04471236376701665,
|
| 790 |
+
"grad_norm": 0.21452916203736186,
|
| 791 |
+
"learning_rate": 8.241491245282769e-05,
|
| 792 |
+
"loss": 0.0508,
|
| 793 |
+
"step": 1120
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.045111581300650724,
|
| 797 |
+
"grad_norm": 0.3305103751193663,
|
| 798 |
+
"learning_rate": 8.251925272662533e-05,
|
| 799 |
+
"loss": 0.0525,
|
| 800 |
+
"step": 1130
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.0455107988342848,
|
| 804 |
+
"grad_norm": 2.2298184302133053,
|
| 805 |
+
"learning_rate": 8.262267369090983e-05,
|
| 806 |
+
"loss": 0.061,
|
| 807 |
+
"step": 1140
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.04591001636791888,
|
| 811 |
+
"grad_norm": 0.93817128366632,
|
| 812 |
+
"learning_rate": 8.272519140379816e-05,
|
| 813 |
+
"loss": 0.0901,
|
| 814 |
+
"step": 1150
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.046309233901552956,
|
| 818 |
+
"grad_norm": 0.9468187201583408,
|
| 819 |
+
"learning_rate": 8.282682150630287e-05,
|
| 820 |
+
"loss": 0.0643,
|
| 821 |
+
"step": 1160
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.04670845143518703,
|
| 825 |
+
"grad_norm": 0.3289089088828509,
|
| 826 |
+
"learning_rate": 8.292757923665358e-05,
|
| 827 |
+
"loss": 0.056,
|
| 828 |
+
"step": 1170
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.04710766896882111,
|
| 832 |
+
"grad_norm": 0.7889381357026073,
|
| 833 |
+
"learning_rate": 8.302747944400921e-05,
|
| 834 |
+
"loss": 0.0944,
|
| 835 |
+
"step": 1180
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 0.04750688650245519,
|
| 839 |
+
"grad_norm": 0.6639073315567026,
|
| 840 |
+
"learning_rate": 8.312653660159161e-05,
|
| 841 |
+
"loss": 0.0649,
|
| 842 |
+
"step": 1190
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.04790610403608927,
|
| 846 |
+
"grad_norm": 1.1182816591396891,
|
| 847 |
+
"learning_rate": 8.322476481926952e-05,
|
| 848 |
+
"loss": 0.0546,
|
| 849 |
+
"step": 1200
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.04830532156972334,
|
| 853 |
+
"grad_norm": 1.2459681517250556,
|
| 854 |
+
"learning_rate": 8.332217785562046e-05,
|
| 855 |
+
"loss": 0.0781,
|
| 856 |
+
"step": 1210
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.04870453910335742,
|
| 860 |
+
"grad_norm": 1.019130956290865,
|
| 861 |
+
"learning_rate": 8.341878912949629e-05,
|
| 862 |
+
"loss": 0.0518,
|
| 863 |
+
"step": 1220
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 0.0491037566369915,
|
| 867 |
+
"grad_norm": 1.220775853388589,
|
| 868 |
+
"learning_rate": 8.351461173111643e-05,
|
| 869 |
+
"loss": 0.1007,
|
| 870 |
+
"step": 1230
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 0.049502974170625574,
|
| 874 |
+
"grad_norm": 1.7989207118679498,
|
| 875 |
+
"learning_rate": 8.360965843271233e-05,
|
| 876 |
+
"loss": 0.089,
|
| 877 |
+
"step": 1240
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 0.04990219170425965,
|
| 881 |
+
"grad_norm": 0.2744753836119675,
|
| 882 |
+
"learning_rate": 8.370394169874404e-05,
|
| 883 |
+
"loss": 0.1105,
|
| 884 |
+
"step": 1250
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 0.05030140923789373,
|
| 888 |
+
"grad_norm": 0.9289260996715916,
|
| 889 |
+
"learning_rate": 8.379747369571008e-05,
|
| 890 |
+
"loss": 0.0745,
|
| 891 |
+
"step": 1260
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.050700626771527806,
|
| 895 |
+
"grad_norm": 0.854436318996496,
|
| 896 |
+
"learning_rate": 8.389026630156928e-05,
|
| 897 |
+
"loss": 0.0633,
|
| 898 |
+
"step": 1270
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.05109984430516188,
|
| 902 |
+
"grad_norm": 0.8800673144054446,
|
| 903 |
+
"learning_rate": 8.39823311147933e-05,
|
| 904 |
+
"loss": 0.0578,
|
| 905 |
+
"step": 1280
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 0.05149906183879596,
|
| 909 |
+
"grad_norm": 0.6454065116002895,
|
| 910 |
+
"learning_rate": 8.407367946306682e-05,
|
| 911 |
+
"loss": 0.1094,
|
| 912 |
+
"step": 1290
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"epoch": 0.05189827937243004,
|
| 916 |
+
"grad_norm": 1.5118193034152674,
|
| 917 |
+
"learning_rate": 8.416432241165186e-05,
|
| 918 |
+
"loss": 0.0722,
|
| 919 |
+
"step": 1300
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.05229749690606411,
|
| 923 |
+
"grad_norm": 2.0322104479409444,
|
| 924 |
+
"learning_rate": 8.425427077143155e-05,
|
| 925 |
+
"loss": 0.045,
|
| 926 |
+
"step": 1310
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 0.05269671443969819,
|
| 930 |
+
"grad_norm": 1.213509221133465,
|
| 931 |
+
"learning_rate": 8.434353510664808e-05,
|
| 932 |
+
"loss": 0.0488,
|
| 933 |
+
"step": 1320
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 0.05309593197333227,
|
| 937 |
+
"grad_norm": 0.3212234416060924,
|
| 938 |
+
"learning_rate": 8.443212574234867e-05,
|
| 939 |
+
"loss": 0.0541,
|
| 940 |
+
"step": 1330
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 0.05349514950696634,
|
| 944 |
+
"grad_norm": 2.459961563897475,
|
| 945 |
+
"learning_rate": 8.45200527715526e-05,
|
| 946 |
+
"loss": 0.0612,
|
| 947 |
+
"step": 1340
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"epoch": 0.053894367040600424,
|
| 951 |
+
"grad_norm": 0.15501293377743686,
|
| 952 |
+
"learning_rate": 8.46073260621519e-05,
|
| 953 |
+
"loss": 0.0361,
|
| 954 |
+
"step": 1350
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.0542935845742345,
|
| 958 |
+
"grad_norm": 2.549676142822002,
|
| 959 |
+
"learning_rate": 8.469395526355722e-05,
|
| 960 |
+
"loss": 0.0678,
|
| 961 |
+
"step": 1360
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"epoch": 0.05469280210786858,
|
| 965 |
+
"grad_norm": 1.1347192124455705,
|
| 966 |
+
"learning_rate": 8.477994981310044e-05,
|
| 967 |
+
"loss": 0.0403,
|
| 968 |
+
"step": 1370
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 0.055092019641502656,
|
| 972 |
+
"grad_norm": 1.3093319730595865,
|
| 973 |
+
"learning_rate": 8.486531894220431e-05,
|
| 974 |
+
"loss": 0.0498,
|
| 975 |
+
"step": 1380
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 0.05549123717513673,
|
| 979 |
+
"grad_norm": 1.4536529924377708,
|
| 980 |
+
"learning_rate": 8.495007168232951e-05,
|
| 981 |
+
"loss": 0.0701,
|
| 982 |
+
"step": 1390
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 0.05589045470877081,
|
| 986 |
+
"grad_norm": 0.531916156069153,
|
| 987 |
+
"learning_rate": 8.503421687070836e-05,
|
| 988 |
+
"loss": 0.0622,
|
| 989 |
+
"step": 1400
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 0.05628967224240489,
|
| 993 |
+
"grad_norm": 1.1571467808278315,
|
| 994 |
+
"learning_rate": 8.511776315587463e-05,
|
| 995 |
+
"loss": 0.0585,
|
| 996 |
+
"step": 1410
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"epoch": 0.05668888977603896,
|
| 1000 |
+
"grad_norm": 1.7541520882599784,
|
| 1001 |
+
"learning_rate": 8.520071900299782e-05,
|
| 1002 |
+
"loss": 0.1239,
|
| 1003 |
+
"step": 1420
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"epoch": 0.05708810730967304,
|
| 1007 |
+
"grad_norm": 0.26434833237037547,
|
| 1008 |
+
"learning_rate": 8.528309269903042e-05,
|
| 1009 |
+
"loss": 0.06,
|
| 1010 |
+
"step": 1430
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.05748732484330712,
|
| 1014 |
+
"grad_norm": 2.6666324283388474,
|
| 1015 |
+
"learning_rate": 8.536489235767567e-05,
|
| 1016 |
+
"loss": 0.0718,
|
| 1017 |
+
"step": 1440
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.05788654237694119,
|
| 1021 |
+
"grad_norm": 0.3400922948582512,
|
| 1022 |
+
"learning_rate": 8.544612592418352e-05,
|
| 1023 |
+
"loss": 0.0447,
|
| 1024 |
+
"step": 1450
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 0.058285759910575274,
|
| 1028 |
+
"grad_norm": 1.3999499096361745,
|
| 1029 |
+
"learning_rate": 8.552680117998175e-05,
|
| 1030 |
+
"loss": 0.0742,
|
| 1031 |
+
"step": 1460
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 0.05868497744420935,
|
| 1035 |
+
"grad_norm": 0.7611622338959521,
|
| 1036 |
+
"learning_rate": 8.560692574714892e-05,
|
| 1037 |
+
"loss": 0.0468,
|
| 1038 |
+
"step": 1470
|
| 1039 |
+
},
|
| 1040 |
+
{
|
| 1041 |
+
"epoch": 0.059084194977843424,
|
| 1042 |
+
"grad_norm": 2.470390247344094,
|
| 1043 |
+
"learning_rate": 8.568650709273593e-05,
|
| 1044 |
+
"loss": 0.0904,
|
| 1045 |
+
"step": 1480
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 0.059483412511477506,
|
| 1049 |
+
"grad_norm": 0.7772869206537453,
|
| 1050 |
+
"learning_rate": 8.576555253294187e-05,
|
| 1051 |
+
"loss": 0.0799,
|
| 1052 |
+
"step": 1490
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 0.05988263004511158,
|
| 1056 |
+
"grad_norm": 0.20457141929145445,
|
| 1057 |
+
"learning_rate": 8.584406923715019e-05,
|
| 1058 |
+
"loss": 0.0378,
|
| 1059 |
+
"step": 1500
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 0.060281847578745655,
|
| 1063 |
+
"grad_norm": 0.6068750755678066,
|
| 1064 |
+
"learning_rate": 8.592206423183099e-05,
|
| 1065 |
+
"loss": 0.0771,
|
| 1066 |
+
"step": 1510
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.06068106511237974,
|
| 1070 |
+
"grad_norm": 1.452516141509269,
|
| 1071 |
+
"learning_rate": 8.599954440431426e-05,
|
| 1072 |
+
"loss": 0.0554,
|
| 1073 |
+
"step": 1520
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 0.06108028264601381,
|
| 1077 |
+
"grad_norm": 0.569251980814837,
|
| 1078 |
+
"learning_rate": 8.60765165064396e-05,
|
| 1079 |
+
"loss": 0.0705,
|
| 1080 |
+
"step": 1530
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 0.06147950017964789,
|
| 1084 |
+
"grad_norm": 0.2294559534793912,
|
| 1085 |
+
"learning_rate": 8.615298715808692e-05,
|
| 1086 |
+
"loss": 0.0574,
|
| 1087 |
+
"step": 1540
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"epoch": 0.06187871771328197,
|
| 1091 |
+
"grad_norm": 0.8496052440834033,
|
| 1092 |
+
"learning_rate": 8.622896285059299e-05,
|
| 1093 |
+
"loss": 0.0627,
|
| 1094 |
+
"step": 1550
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 0.06227793524691604,
|
| 1098 |
+
"grad_norm": 0.7136223062428863,
|
| 1099 |
+
"learning_rate": 8.630444995005803e-05,
|
| 1100 |
+
"loss": 0.0515,
|
| 1101 |
+
"step": 1560
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 0.06267715278055012,
|
| 1105 |
+
"grad_norm": 1.1106546858635593,
|
| 1106 |
+
"learning_rate": 8.637945470054669e-05,
|
| 1107 |
+
"loss": 0.0632,
|
| 1108 |
+
"step": 1570
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 0.0630763703141842,
|
| 1112 |
+
"grad_norm": 0.3371801019234766,
|
| 1113 |
+
"learning_rate": 8.645398322718747e-05,
|
| 1114 |
+
"loss": 0.0788,
|
| 1115 |
+
"step": 1580
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 0.06347558784781827,
|
| 1119 |
+
"grad_norm": 0.236169068255148,
|
| 1120 |
+
"learning_rate": 8.652804153917429e-05,
|
| 1121 |
+
"loss": 0.0744,
|
| 1122 |
+
"step": 1590
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 0.06387480538145235,
|
| 1126 |
+
"grad_norm": 0.2064526314096174,
|
| 1127 |
+
"learning_rate": 8.660163553267397e-05,
|
| 1128 |
+
"loss": 0.0443,
|
| 1129 |
+
"step": 1600
|
| 1130 |
+
},
|
| 1131 |
+
{
|
| 1132 |
+
"epoch": 0.06427402291508644,
|
| 1133 |
+
"grad_norm": 2.459251200063712,
|
| 1134 |
+
"learning_rate": 8.667477099364316e-05,
|
| 1135 |
+
"loss": 0.0661,
|
| 1136 |
+
"step": 1610
|
| 1137 |
+
},
|
| 1138 |
+
{
|
| 1139 |
+
"epoch": 0.06467324044872051,
|
| 1140 |
+
"grad_norm": 1.0043243991341193,
|
| 1141 |
+
"learning_rate": 8.674745360055805e-05,
|
| 1142 |
+
"loss": 0.077,
|
| 1143 |
+
"step": 1620
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 0.06507245798235459,
|
| 1147 |
+
"grad_norm": 0.6077242408276503,
|
| 1148 |
+
"learning_rate": 8.681968892706012e-05,
|
| 1149 |
+
"loss": 0.0758,
|
| 1150 |
+
"step": 1630
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 0.06547167551598866,
|
| 1154 |
+
"grad_norm": 0.5112997355430338,
|
| 1155 |
+
"learning_rate": 8.689148244452086e-05,
|
| 1156 |
+
"loss": 0.0508,
|
| 1157 |
+
"step": 1640
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"epoch": 0.06587089304962274,
|
| 1161 |
+
"grad_norm": 0.6811161312428127,
|
| 1162 |
+
"learning_rate": 8.696283952452874e-05,
|
| 1163 |
+
"loss": 0.1102,
|
| 1164 |
+
"step": 1650
|
| 1165 |
+
},
|
| 1166 |
+
{
|
| 1167 |
+
"epoch": 0.06627011058325681,
|
| 1168 |
+
"grad_norm": 0.08253020817352436,
|
| 1169 |
+
"learning_rate": 8.703376544130078e-05,
|
| 1170 |
+
"loss": 0.0609,
|
| 1171 |
+
"step": 1660
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"epoch": 0.0666693281168909,
|
| 1175 |
+
"grad_norm": 0.14002755044269277,
|
| 1176 |
+
"learning_rate": 8.710426537402192e-05,
|
| 1177 |
+
"loss": 0.0687,
|
| 1178 |
+
"step": 1670
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 0.06706854565052497,
|
| 1182 |
+
"grad_norm": 2.7372240520461677,
|
| 1183 |
+
"learning_rate": 8.717434440911451e-05,
|
| 1184 |
+
"loss": 0.0472,
|
| 1185 |
+
"step": 1680
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 0.06746776318415905,
|
| 1189 |
+
"grad_norm": 0.33623563408312035,
|
| 1190 |
+
"learning_rate": 8.724400754244037e-05,
|
| 1191 |
+
"loss": 0.0588,
|
| 1192 |
+
"step": 1690
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"epoch": 0.06786698071779312,
|
| 1196 |
+
"grad_norm": 0.5698564181062653,
|
| 1197 |
+
"learning_rate": 8.731325968143787e-05,
|
| 1198 |
+
"loss": 0.0769,
|
| 1199 |
+
"step": 1700
|
| 1200 |
+
},
|
| 1201 |
+
{
|
| 1202 |
+
"epoch": 0.0682661982514272,
|
| 1203 |
+
"grad_norm": 0.4525305014011975,
|
| 1204 |
+
"learning_rate": 8.738210564719664e-05,
|
| 1205 |
+
"loss": 0.0828,
|
| 1206 |
+
"step": 1710
|
| 1207 |
+
},
|
| 1208 |
+
{
|
| 1209 |
+
"epoch": 0.06866541578506127,
|
| 1210 |
+
"grad_norm": 0.28785918919805653,
|
| 1211 |
+
"learning_rate": 8.745055017647127e-05,
|
| 1212 |
+
"loss": 0.0762,
|
| 1213 |
+
"step": 1720
|
| 1214 |
+
},
|
| 1215 |
+
{
|
| 1216 |
+
"epoch": 0.06906463331869536,
|
| 1217 |
+
"grad_norm": 0.4232601140844762,
|
| 1218 |
+
"learning_rate": 8.751859792363715e-05,
|
| 1219 |
+
"loss": 0.071,
|
| 1220 |
+
"step": 1730
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"epoch": 0.06946385085232944,
|
| 1224 |
+
"grad_norm": 0.4192502611164337,
|
| 1225 |
+
"learning_rate": 8.758625346258969e-05,
|
| 1226 |
+
"loss": 0.0839,
|
| 1227 |
+
"step": 1740
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"epoch": 0.06986306838596351,
|
| 1231 |
+
"grad_norm": 0.6623452619836312,
|
| 1232 |
+
"learning_rate": 8.765352128858903e-05,
|
| 1233 |
+
"loss": 0.089,
|
| 1234 |
+
"step": 1750
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"epoch": 0.07026228591959759,
|
| 1238 |
+
"grad_norm": 1.857160256591451,
|
| 1239 |
+
"learning_rate": 8.772040582005251e-05,
|
| 1240 |
+
"loss": 0.0792,
|
| 1241 |
+
"step": 1760
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"epoch": 0.07066150345323166,
|
| 1245 |
+
"grad_norm": 0.6388474695897128,
|
| 1246 |
+
"learning_rate": 8.778691140029603e-05,
|
| 1247 |
+
"loss": 0.0625,
|
| 1248 |
+
"step": 1770
|
| 1249 |
+
},
|
| 1250 |
+
{
|
| 1251 |
+
"epoch": 0.07106072098686575,
|
| 1252 |
+
"grad_norm": 0.6978578032659793,
|
| 1253 |
+
"learning_rate": 8.785304229922658e-05,
|
| 1254 |
+
"loss": 0.1292,
|
| 1255 |
+
"step": 1780
|
| 1256 |
+
},
|
| 1257 |
+
{
|
| 1258 |
+
"epoch": 0.07145993852049982,
|
| 1259 |
+
"grad_norm": 0.3741360039984228,
|
| 1260 |
+
"learning_rate": 8.791880271498722e-05,
|
| 1261 |
+
"loss": 0.0714,
|
| 1262 |
+
"step": 1790
|
| 1263 |
+
},
|
| 1264 |
+
{
|
| 1265 |
+
"epoch": 0.0718591560541339,
|
| 1266 |
+
"grad_norm": 1.6505423990273078,
|
| 1267 |
+
"learning_rate": 8.798419677555634e-05,
|
| 1268 |
+
"loss": 0.0911,
|
| 1269 |
+
"step": 1800
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 0.07225837358776797,
|
| 1273 |
+
"grad_norm": 0.6050083970686374,
|
| 1274 |
+
"learning_rate": 8.804922854030258e-05,
|
| 1275 |
+
"loss": 0.0882,
|
| 1276 |
+
"step": 1810
|
| 1277 |
+
},
|
| 1278 |
+
{
|
| 1279 |
+
"epoch": 0.07265759112140205,
|
| 1280 |
+
"grad_norm": 1.2408152482478003,
|
| 1281 |
+
"learning_rate": 8.811390200149687e-05,
|
| 1282 |
+
"loss": 0.0373,
|
| 1283 |
+
"step": 1820
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"epoch": 0.07305680865503612,
|
| 1287 |
+
"grad_norm": 0.21333985745568887,
|
| 1288 |
+
"learning_rate": 8.81782210857831e-05,
|
| 1289 |
+
"loss": 0.0449,
|
| 1290 |
+
"step": 1830
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 0.07345602618867021,
|
| 1294 |
+
"grad_norm": 0.27016768497953925,
|
| 1295 |
+
"learning_rate": 8.824218965560874e-05,
|
| 1296 |
+
"loss": 0.069,
|
| 1297 |
+
"step": 1840
|
| 1298 |
+
},
|
| 1299 |
+
{
|
| 1300 |
+
"epoch": 0.07385524372230429,
|
| 1301 |
+
"grad_norm": 0.38626281679917784,
|
| 1302 |
+
"learning_rate": 8.830581151061661e-05,
|
| 1303 |
+
"loss": 0.0392,
|
| 1304 |
+
"step": 1850
|
| 1305 |
+
},
|
| 1306 |
+
{
|
| 1307 |
+
"epoch": 0.07425446125593836,
|
| 1308 |
+
"grad_norm": 4.446410260564538,
|
| 1309 |
+
"learning_rate": 8.836909038899914e-05,
|
| 1310 |
+
"loss": 0.0814,
|
| 1311 |
+
"step": 1860
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"epoch": 0.07465367878957244,
|
| 1315 |
+
"grad_norm": 0.5932527992254153,
|
| 1316 |
+
"learning_rate": 8.843202996881645e-05,
|
| 1317 |
+
"loss": 0.0618,
|
| 1318 |
+
"step": 1870
|
| 1319 |
+
},
|
| 1320 |
+
{
|
| 1321 |
+
"epoch": 0.07505289632320651,
|
| 1322 |
+
"grad_norm": 0.5026914124479029,
|
| 1323 |
+
"learning_rate": 8.849463386927907e-05,
|
| 1324 |
+
"loss": 0.0847,
|
| 1325 |
+
"step": 1880
|
| 1326 |
+
},
|
| 1327 |
+
{
|
| 1328 |
+
"epoch": 0.07545211385684059,
|
| 1329 |
+
"grad_norm": 1.8341657629391837,
|
| 1330 |
+
"learning_rate": 8.85569056519969e-05,
|
| 1331 |
+
"loss": 0.0818,
|
| 1332 |
+
"step": 1890
|
| 1333 |
+
},
|
| 1334 |
+
{
|
| 1335 |
+
"epoch": 0.07585133139047467,
|
| 1336 |
+
"grad_norm": 0.9574408278201783,
|
| 1337 |
+
"learning_rate": 8.861884882219493e-05,
|
| 1338 |
+
"loss": 0.0791,
|
| 1339 |
+
"step": 1900
|
| 1340 |
+
},
|
| 1341 |
+
{
|
| 1342 |
+
"epoch": 0.07625054892410875,
|
| 1343 |
+
"grad_norm": 1.1904224506814953,
|
| 1344 |
+
"learning_rate": 8.868046682989726e-05,
|
| 1345 |
+
"loss": 0.0836,
|
| 1346 |
+
"step": 1910
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 0.07664976645774282,
|
| 1350 |
+
"grad_norm": 0.523474266581198,
|
| 1351 |
+
"learning_rate": 8.874176307108011e-05,
|
| 1352 |
+
"loss": 0.0628,
|
| 1353 |
+
"step": 1920
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 0.0770489839913769,
|
| 1357 |
+
"grad_norm": 1.559277136342286,
|
| 1358 |
+
"learning_rate": 8.880274088879496e-05,
|
| 1359 |
+
"loss": 0.0609,
|
| 1360 |
+
"step": 1930
|
| 1361 |
+
},
|
| 1362 |
+
{
|
| 1363 |
+
"epoch": 0.07744820152501097,
|
| 1364 |
+
"grad_norm": 0.5127563922641422,
|
| 1365 |
+
"learning_rate": 8.88634035742625e-05,
|
| 1366 |
+
"loss": 0.0925,
|
| 1367 |
+
"step": 1940
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"epoch": 0.07784741905864506,
|
| 1371 |
+
"grad_norm": 0.22233699013087163,
|
| 1372 |
+
"learning_rate": 8.89237543679387e-05,
|
| 1373 |
+
"loss": 0.0523,
|
| 1374 |
+
"step": 1950
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"epoch": 0.07824663659227914,
|
| 1378 |
+
"grad_norm": 0.12044996122785652,
|
| 1379 |
+
"learning_rate": 8.898379646055336e-05,
|
| 1380 |
+
"loss": 0.0619,
|
| 1381 |
+
"step": 1960
|
| 1382 |
+
},
|
| 1383 |
+
{
|
| 1384 |
+
"epoch": 0.07864585412591321,
|
| 1385 |
+
"grad_norm": 0.23180408798314633,
|
| 1386 |
+
"learning_rate": 8.904353299412252e-05,
|
| 1387 |
+
"loss": 0.0602,
|
| 1388 |
+
"step": 1970
|
| 1389 |
+
},
|
| 1390 |
+
{
|
| 1391 |
+
"epoch": 0.07904507165954729,
|
| 1392 |
+
"grad_norm": 3.283710519006683,
|
| 1393 |
+
"learning_rate": 8.91029670629349e-05,
|
| 1394 |
+
"loss": 0.055,
|
| 1395 |
+
"step": 1980
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 0.07944428919318136,
|
| 1399 |
+
"grad_norm": 0.15911681428276372,
|
| 1400 |
+
"learning_rate": 8.916210171451378e-05,
|
| 1401 |
+
"loss": 0.0587,
|
| 1402 |
+
"step": 1990
|
| 1403 |
+
},
|
| 1404 |
+
{
|
| 1405 |
+
"epoch": 0.07984350672681544,
|
| 1406 |
+
"grad_norm": 0.17469923550169483,
|
| 1407 |
+
"learning_rate": 8.922093995055462e-05,
|
| 1408 |
+
"loss": 0.0639,
|
| 1409 |
+
"step": 2000
|
| 1410 |
+
},
|
| 1411 |
+
{
|
| 1412 |
+
"epoch": 0.08024272426044952,
|
| 1413 |
+
"grad_norm": 5.417640775721216,
|
| 1414 |
+
"learning_rate": 8.927948472783942e-05,
|
| 1415 |
+
"loss": 0.0887,
|
| 1416 |
+
"step": 2010
|
| 1417 |
+
},
|
| 1418 |
+
{
|
| 1419 |
+
"epoch": 0.0806419417940836,
|
| 1420 |
+
"grad_norm": 1.4044429457986154,
|
| 1421 |
+
"learning_rate": 8.933773895912817e-05,
|
| 1422 |
+
"loss": 0.1035,
|
| 1423 |
+
"step": 2020
|
| 1424 |
+
},
|
| 1425 |
+
{
|
| 1426 |
+
"epoch": 0.08104115932771767,
|
| 1427 |
+
"grad_norm": 0.3385160644949956,
|
| 1428 |
+
"learning_rate": 8.939570551402853e-05,
|
| 1429 |
+
"loss": 0.0743,
|
| 1430 |
+
"step": 2030
|
| 1431 |
+
},
|
| 1432 |
+
{
|
| 1433 |
+
"epoch": 0.08144037686135175,
|
| 1434 |
+
"grad_norm": 0.21983666639913327,
|
| 1435 |
+
"learning_rate": 8.945338721984404e-05,
|
| 1436 |
+
"loss": 0.0601,
|
| 1437 |
+
"step": 2040
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"epoch": 0.08183959439498582,
|
| 1441 |
+
"grad_norm": 2.553192791387149,
|
| 1442 |
+
"learning_rate": 8.951078686240155e-05,
|
| 1443 |
+
"loss": 0.0806,
|
| 1444 |
+
"step": 2050
|
| 1445 |
+
},
|
| 1446 |
+
{
|
| 1447 |
+
"epoch": 0.0822388119286199,
|
| 1448 |
+
"grad_norm": 1.1619542999670456,
|
| 1449 |
+
"learning_rate": 8.956790718685858e-05,
|
| 1450 |
+
"loss": 0.0894,
|
| 1451 |
+
"step": 2060
|
| 1452 |
+
},
|
| 1453 |
+
{
|
| 1454 |
+
"epoch": 0.08263802946225399,
|
| 1455 |
+
"grad_norm": 0.38923286712392613,
|
| 1456 |
+
"learning_rate": 8.962475089849113e-05,
|
| 1457 |
+
"loss": 0.1112,
|
| 1458 |
+
"step": 2070
|
| 1459 |
+
},
|
| 1460 |
+
{
|
| 1461 |
+
"epoch": 0.08303724699588806,
|
| 1462 |
+
"grad_norm": 4.726496524970905,
|
| 1463 |
+
"learning_rate": 8.968132066346247e-05,
|
| 1464 |
+
"loss": 0.1007,
|
| 1465 |
+
"step": 2080
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"epoch": 0.08343646452952214,
|
| 1469 |
+
"grad_norm": 1.1094373526242203,
|
| 1470 |
+
"learning_rate": 8.973761910957347e-05,
|
| 1471 |
+
"loss": 0.0969,
|
| 1472 |
+
"step": 2090
|
| 1473 |
+
},
|
| 1474 |
+
{
|
| 1475 |
+
"epoch": 0.08383568206315621,
|
| 1476 |
+
"grad_norm": 0.2895375239530162,
|
| 1477 |
+
"learning_rate": 8.97936488269952e-05,
|
| 1478 |
+
"loss": 0.0379,
|
| 1479 |
+
"step": 2100
|
| 1480 |
+
},
|
| 1481 |
+
{
|
| 1482 |
+
"epoch": 0.08423489959679029,
|
| 1483 |
+
"grad_norm": 1.7543701496251414,
|
| 1484 |
+
"learning_rate": 8.984941236898378e-05,
|
| 1485 |
+
"loss": 0.0675,
|
| 1486 |
+
"step": 2110
|
| 1487 |
+
},
|
| 1488 |
+
{
|
| 1489 |
+
"epoch": 0.08463411713042437,
|
| 1490 |
+
"grad_norm": 1.005491300629812,
|
| 1491 |
+
"learning_rate": 8.990491225257873e-05,
|
| 1492 |
+
"loss": 0.0824,
|
| 1493 |
+
"step": 2120
|
| 1494 |
+
},
|
| 1495 |
+
{
|
| 1496 |
+
"epoch": 0.08503333466405845,
|
| 1497 |
+
"grad_norm": 0.09759666962453613,
|
| 1498 |
+
"learning_rate": 8.996015095928464e-05,
|
| 1499 |
+
"loss": 0.0559,
|
| 1500 |
+
"step": 2130
|
| 1501 |
+
},
|
| 1502 |
+
{
|
| 1503 |
+
"epoch": 0.08543255219769252,
|
| 1504 |
+
"grad_norm": 0.39268330721556804,
|
| 1505 |
+
"learning_rate": 9.001513093573687e-05,
|
| 1506 |
+
"loss": 0.1009,
|
| 1507 |
+
"step": 2140
|
| 1508 |
+
},
|
| 1509 |
+
{
|
| 1510 |
+
"epoch": 0.0858317697313266,
|
| 1511 |
+
"grad_norm": 1.1297782557560954,
|
| 1512 |
+
"learning_rate": 9.006985459435193e-05,
|
| 1513 |
+
"loss": 0.0483,
|
| 1514 |
+
"step": 2150
|
| 1515 |
+
},
|
| 1516 |
+
{
|
| 1517 |
+
"epoch": 0.08623098726496067,
|
| 1518 |
+
"grad_norm": 1.0829945030987893,
|
| 1519 |
+
"learning_rate": 9.012432431396249e-05,
|
| 1520 |
+
"loss": 0.1053,
|
| 1521 |
+
"step": 2160
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"epoch": 0.08663020479859475,
|
| 1525 |
+
"grad_norm": 1.078088393046469,
|
| 1526 |
+
"learning_rate": 9.017854244043799e-05,
|
| 1527 |
+
"loss": 0.0785,
|
| 1528 |
+
"step": 2170
|
| 1529 |
+
},
|
| 1530 |
+
{
|
| 1531 |
+
"epoch": 0.08702942233222884,
|
| 1532 |
+
"grad_norm": 0.5133010653273858,
|
| 1533 |
+
"learning_rate": 9.023251128729078e-05,
|
| 1534 |
+
"loss": 0.065,
|
| 1535 |
+
"step": 2180
|
| 1536 |
+
},
|
| 1537 |
+
{
|
| 1538 |
+
"epoch": 0.08742863986586291,
|
| 1539 |
+
"grad_norm": 0.4491579268972776,
|
| 1540 |
+
"learning_rate": 9.028623313626857e-05,
|
| 1541 |
+
"loss": 0.1013,
|
| 1542 |
+
"step": 2190
|
| 1543 |
+
},
|
| 1544 |
+
{
|
| 1545 |
+
"epoch": 0.08782785739949699,
|
| 1546 |
+
"grad_norm": 2.6647367358509193,
|
| 1547 |
+
"learning_rate": 9.033971023793318e-05,
|
| 1548 |
+
"loss": 0.1198,
|
| 1549 |
+
"step": 2200
|
| 1550 |
+
},
|
| 1551 |
+
{
|
| 1552 |
+
"epoch": 0.08822707493313106,
|
| 1553 |
+
"grad_norm": 0.24347726763609193,
|
| 1554 |
+
"learning_rate": 9.039294481222638e-05,
|
| 1555 |
+
"loss": 0.0705,
|
| 1556 |
+
"step": 2210
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"epoch": 0.08862629246676514,
|
| 1560 |
+
"grad_norm": 0.8291531898362153,
|
| 1561 |
+
"learning_rate": 9.044593904902276e-05,
|
| 1562 |
+
"loss": 0.0832,
|
| 1563 |
+
"step": 2220
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"epoch": 0.08902551000039922,
|
| 1567 |
+
"grad_norm": 0.3659855529329366,
|
| 1568 |
+
"learning_rate": 9.049869510867034e-05,
|
| 1569 |
+
"loss": 0.1044,
|
| 1570 |
+
"step": 2230
|
| 1571 |
+
},
|
| 1572 |
+
{
|
| 1573 |
+
"epoch": 0.0894247275340333,
|
| 1574 |
+
"grad_norm": 5.902300509051372,
|
| 1575 |
+
"learning_rate": 9.055121512251897e-05,
|
| 1576 |
+
"loss": 0.0769,
|
| 1577 |
+
"step": 2240
|
| 1578 |
+
},
|
| 1579 |
+
{
|
| 1580 |
+
"epoch": 0.08982394506766737,
|
| 1581 |
+
"grad_norm": 1.350743023531939,
|
| 1582 |
+
"learning_rate": 9.060350119343701e-05,
|
| 1583 |
+
"loss": 0.0639,
|
| 1584 |
+
"step": 2250
|
| 1585 |
+
},
|
| 1586 |
+
{
|
| 1587 |
+
"epoch": 0.09022316260130145,
|
| 1588 |
+
"grad_norm": 0.6596569601933064,
|
| 1589 |
+
"learning_rate": 9.065555539631659e-05,
|
| 1590 |
+
"loss": 0.0776,
|
| 1591 |
+
"step": 2260
|
| 1592 |
+
},
|
| 1593 |
+
{
|
| 1594 |
+
"epoch": 0.09062238013493552,
|
| 1595 |
+
"grad_norm": 0.42640773750176064,
|
| 1596 |
+
"learning_rate": 9.070737977856764e-05,
|
| 1597 |
+
"loss": 0.1034,
|
| 1598 |
+
"step": 2270
|
| 1599 |
+
},
|
| 1600 |
+
{
|
| 1601 |
+
"epoch": 0.0910215976685696,
|
| 1602 |
+
"grad_norm": 0.1479642989294186,
|
| 1603 |
+
"learning_rate": 9.075897636060108e-05,
|
| 1604 |
+
"loss": 0.1035,
|
| 1605 |
+
"step": 2280
|
| 1606 |
+
},
|
| 1607 |
+
{
|
| 1608 |
+
"epoch": 0.09142081520220369,
|
| 1609 |
+
"grad_norm": 0.8493088400026695,
|
| 1610 |
+
"learning_rate": 9.081034713630148e-05,
|
| 1611 |
+
"loss": 0.0973,
|
| 1612 |
+
"step": 2290
|
| 1613 |
+
},
|
| 1614 |
+
{
|
| 1615 |
+
"epoch": 0.09182003273583776,
|
| 1616 |
+
"grad_norm": 1.5886948837208812,
|
| 1617 |
+
"learning_rate": 9.086149407348943e-05,
|
| 1618 |
+
"loss": 0.0432,
|
| 1619 |
+
"step": 2300
|
| 1620 |
+
},
|
| 1621 |
+
{
|
| 1622 |
+
"epoch": 0.09221925026947184,
|
| 1623 |
+
"grad_norm": 3.079194389194246,
|
| 1624 |
+
"learning_rate": 9.091241911437374e-05,
|
| 1625 |
+
"loss": 0.0701,
|
| 1626 |
+
"step": 2310
|
| 1627 |
+
},
|
| 1628 |
+
{
|
| 1629 |
+
"epoch": 0.09261846780310591,
|
| 1630 |
+
"grad_norm": 0.9720536038970082,
|
| 1631 |
+
"learning_rate": 9.096312417599413e-05,
|
| 1632 |
+
"loss": 0.0652,
|
| 1633 |
+
"step": 2320
|
| 1634 |
+
},
|
| 1635 |
+
{
|
| 1636 |
+
"epoch": 0.09301768533673999,
|
| 1637 |
+
"grad_norm": 2.554630977671387,
|
| 1638 |
+
"learning_rate": 9.101361115065411e-05,
|
| 1639 |
+
"loss": 0.1155,
|
| 1640 |
+
"step": 2330
|
| 1641 |
+
},
|
| 1642 |
+
{
|
| 1643 |
+
"epoch": 0.09341690287037406,
|
| 1644 |
+
"grad_norm": 1.4123609822496237,
|
| 1645 |
+
"learning_rate": 9.106388190634483e-05,
|
| 1646 |
+
"loss": 0.0795,
|
| 1647 |
+
"step": 2340
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"epoch": 0.09381612040400815,
|
| 1651 |
+
"grad_norm": 0.4540060979609624,
|
| 1652 |
+
"learning_rate": 9.111393828715974e-05,
|
| 1653 |
+
"loss": 0.0732,
|
| 1654 |
+
"step": 2350
|
| 1655 |
+
},
|
| 1656 |
+
{
|
| 1657 |
+
"epoch": 0.09421533793764222,
|
| 1658 |
+
"grad_norm": 0.4075911828916644,
|
| 1659 |
+
"learning_rate": 9.116378211370049e-05,
|
| 1660 |
+
"loss": 0.0619,
|
| 1661 |
+
"step": 2360
|
| 1662 |
+
},
|
| 1663 |
+
{
|
| 1664 |
+
"epoch": 0.0946145554712763,
|
| 1665 |
+
"grad_norm": 1.4701997003972624,
|
| 1666 |
+
"learning_rate": 9.121341518347428e-05,
|
| 1667 |
+
"loss": 0.0605,
|
| 1668 |
+
"step": 2370
|
| 1669 |
+
},
|
| 1670 |
+
{
|
| 1671 |
+
"epoch": 0.09501377300491037,
|
| 1672 |
+
"grad_norm": 2.6283239651453347,
|
| 1673 |
+
"learning_rate": 9.126283927128288e-05,
|
| 1674 |
+
"loss": 0.071,
|
| 1675 |
+
"step": 2380
|
| 1676 |
+
},
|
| 1677 |
+
{
|
| 1678 |
+
"epoch": 0.09541299053854445,
|
| 1679 |
+
"grad_norm": 0.3425418898573907,
|
| 1680 |
+
"learning_rate": 9.131205612960331e-05,
|
| 1681 |
+
"loss": 0.0625,
|
| 1682 |
+
"step": 2390
|
| 1683 |
+
},
|
| 1684 |
+
{
|
| 1685 |
+
"epoch": 0.09581220807217854,
|
| 1686 |
+
"grad_norm": 1.2410360487953485,
|
| 1687 |
+
"learning_rate": 9.136106748896079e-05,
|
| 1688 |
+
"loss": 0.1062,
|
| 1689 |
+
"step": 2400
|
| 1690 |
+
},
|
| 1691 |
+
{
|
| 1692 |
+
"epoch": 0.09621142560581261,
|
| 1693 |
+
"grad_norm": 0.19271858886467114,
|
| 1694 |
+
"learning_rate": 9.140987505829382e-05,
|
| 1695 |
+
"loss": 0.0743,
|
| 1696 |
+
"step": 2410
|
| 1697 |
+
},
|
| 1698 |
+
{
|
| 1699 |
+
"epoch": 0.09661064313944669,
|
| 1700 |
+
"grad_norm": 1.9714280272805322,
|
| 1701 |
+
"learning_rate": 9.145848052531172e-05,
|
| 1702 |
+
"loss": 0.0613,
|
| 1703 |
+
"step": 2420
|
| 1704 |
+
},
|
| 1705 |
+
{
|
| 1706 |
+
"epoch": 0.09700986067308076,
|
| 1707 |
+
"grad_norm": 0.3896419401090849,
|
| 1708 |
+
"learning_rate": 9.150688555684487e-05,
|
| 1709 |
+
"loss": 0.0634,
|
| 1710 |
+
"step": 2430
|
| 1711 |
+
},
|
| 1712 |
+
{
|
| 1713 |
+
"epoch": 0.09740907820671484,
|
| 1714 |
+
"grad_norm": 0.46048251433669973,
|
| 1715 |
+
"learning_rate": 9.155509179918754e-05,
|
| 1716 |
+
"loss": 0.0472,
|
| 1717 |
+
"step": 2440
|
| 1718 |
+
},
|
| 1719 |
+
{
|
| 1720 |
+
"epoch": 0.09780829574034891,
|
| 1721 |
+
"grad_norm": 1.5138256061910327,
|
| 1722 |
+
"learning_rate": 9.160310087843403e-05,
|
| 1723 |
+
"loss": 0.0765,
|
| 1724 |
+
"step": 2450
|
| 1725 |
+
},
|
| 1726 |
+
{
|
| 1727 |
+
"epoch": 0.098207513273983,
|
| 1728 |
+
"grad_norm": 1.1248799093801287,
|
| 1729 |
+
"learning_rate": 9.16509144008077e-05,
|
| 1730 |
+
"loss": 0.0664,
|
| 1731 |
+
"step": 2460
|
| 1732 |
+
},
|
| 1733 |
+
{
|
| 1734 |
+
"epoch": 0.09860673080761707,
|
| 1735 |
+
"grad_norm": 1.1166878766617159,
|
| 1736 |
+
"learning_rate": 9.16985339529834e-05,
|
| 1737 |
+
"loss": 0.1108,
|
| 1738 |
+
"step": 2470
|
| 1739 |
+
},
|
| 1740 |
+
{
|
| 1741 |
+
"epoch": 0.09900594834125115,
|
| 1742 |
+
"grad_norm": 0.729913896764391,
|
| 1743 |
+
"learning_rate": 9.174596110240358e-05,
|
| 1744 |
+
"loss": 0.0759,
|
| 1745 |
+
"step": 2480
|
| 1746 |
+
},
|
| 1747 |
+
{
|
| 1748 |
+
"epoch": 0.09940516587488522,
|
| 1749 |
+
"grad_norm": 0.46379569663470255,
|
| 1750 |
+
"learning_rate": 9.17931973975876e-05,
|
| 1751 |
+
"loss": 0.0787,
|
| 1752 |
+
"step": 2490
|
| 1753 |
+
},
|
| 1754 |
+
{
|
| 1755 |
+
"epoch": 0.0998043834085193,
|
| 1756 |
+
"grad_norm": 0.558357527018331,
|
| 1757 |
+
"learning_rate": 9.18402443684353e-05,
|
| 1758 |
+
"loss": 0.0794,
|
| 1759 |
+
"step": 2500
|
| 1760 |
+
},
|
| 1761 |
+
{
|
| 1762 |
+
"epoch": 0.10020360094215337,
|
| 1763 |
+
"grad_norm": 0.7685779629415801,
|
| 1764 |
+
"learning_rate": 9.18871035265243e-05,
|
| 1765 |
+
"loss": 0.038,
|
| 1766 |
+
"step": 2510
|
| 1767 |
+
},
|
| 1768 |
+
{
|
| 1769 |
+
"epoch": 0.10060281847578746,
|
| 1770 |
+
"grad_norm": 1.0882487656136575,
|
| 1771 |
+
"learning_rate": 9.193377636540134e-05,
|
| 1772 |
+
"loss": 0.0556,
|
| 1773 |
+
"step": 2520
|
| 1774 |
+
},
|
| 1775 |
+
{
|
| 1776 |
+
"epoch": 0.10100203600942154,
|
| 1777 |
+
"grad_norm": 0.5229247040180375,
|
| 1778 |
+
"learning_rate": 9.198026436086798e-05,
|
| 1779 |
+
"loss": 0.0448,
|
| 1780 |
+
"step": 2530
|
| 1781 |
+
},
|
| 1782 |
+
{
|
| 1783 |
+
"epoch": 0.10140125354305561,
|
| 1784 |
+
"grad_norm": 0.6391101299703439,
|
| 1785 |
+
"learning_rate": 9.202656897126054e-05,
|
| 1786 |
+
"loss": 0.0815,
|
| 1787 |
+
"step": 2540
|
| 1788 |
+
},
|
| 1789 |
+
{
|
| 1790 |
+
"epoch": 0.10180047107668969,
|
| 1791 |
+
"grad_norm": 0.3895503015517989,
|
| 1792 |
+
"learning_rate": 9.207269163772471e-05,
|
| 1793 |
+
"loss": 0.114,
|
| 1794 |
+
"step": 2550
|
| 1795 |
+
},
|
| 1796 |
+
{
|
| 1797 |
+
"epoch": 0.10219968861032376,
|
| 1798 |
+
"grad_norm": 0.3269743813110824,
|
| 1799 |
+
"learning_rate": 9.211863378448457e-05,
|
| 1800 |
+
"loss": 0.0706,
|
| 1801 |
+
"step": 2560
|
| 1802 |
+
},
|
| 1803 |
+
{
|
| 1804 |
+
"epoch": 0.10259890614395785,
|
| 1805 |
+
"grad_norm": 1.1652042050729956,
|
| 1806 |
+
"learning_rate": 9.216439681910651e-05,
|
| 1807 |
+
"loss": 0.0684,
|
| 1808 |
+
"step": 2570
|
| 1809 |
+
},
|
| 1810 |
+
{
|
| 1811 |
+
"epoch": 0.10299812367759192,
|
| 1812 |
+
"grad_norm": 1.6153664622217794,
|
| 1813 |
+
"learning_rate": 9.22099821327581e-05,
|
| 1814 |
+
"loss": 0.1103,
|
| 1815 |
+
"step": 2580
|
| 1816 |
+
},
|
| 1817 |
+
{
|
| 1818 |
+
"epoch": 0.103397341211226,
|
| 1819 |
+
"grad_norm": 0.16509593039498946,
|
| 1820 |
+
"learning_rate": 9.22553911004616e-05,
|
| 1821 |
+
"loss": 0.0734,
|
| 1822 |
+
"step": 2590
|
| 1823 |
+
},
|
| 1824 |
+
{
|
| 1825 |
+
"epoch": 0.10379655874486007,
|
| 1826 |
+
"grad_norm": 0.8302580796273004,
|
| 1827 |
+
"learning_rate": 9.230062508134313e-05,
|
| 1828 |
+
"loss": 0.0864,
|
| 1829 |
+
"step": 2600
|
| 1830 |
+
},
|
| 1831 |
+
{
|
| 1832 |
+
"epoch": 0.10419577627849415,
|
| 1833 |
+
"grad_norm": 0.5909787133808202,
|
| 1834 |
+
"learning_rate": 9.23456854188765e-05,
|
| 1835 |
+
"loss": 0.108,
|
| 1836 |
+
"step": 2610
|
| 1837 |
+
},
|
| 1838 |
+
{
|
| 1839 |
+
"epoch": 0.10459499381212822,
|
| 1840 |
+
"grad_norm": 1.4761953161125028,
|
| 1841 |
+
"learning_rate": 9.239057344112281e-05,
|
| 1842 |
+
"loss": 0.0537,
|
| 1843 |
+
"step": 2620
|
| 1844 |
+
},
|
| 1845 |
+
{
|
| 1846 |
+
"epoch": 0.10499421134576231,
|
| 1847 |
+
"grad_norm": 0.7445714330320076,
|
| 1848 |
+
"learning_rate": 9.243529046096521e-05,
|
| 1849 |
+
"loss": 0.0872,
|
| 1850 |
+
"step": 2630
|
| 1851 |
+
},
|
| 1852 |
+
{
|
| 1853 |
+
"epoch": 0.10539342887939639,
|
| 1854 |
+
"grad_norm": 0.5239333743685901,
|
| 1855 |
+
"learning_rate": 9.247983777633934e-05,
|
| 1856 |
+
"loss": 0.0667,
|
| 1857 |
+
"step": 2640
|
| 1858 |
+
},
|
| 1859 |
+
{
|
| 1860 |
+
"epoch": 0.10579264641303046,
|
| 1861 |
+
"grad_norm": 2.6708744396415383,
|
| 1862 |
+
"learning_rate": 9.252421667045939e-05,
|
| 1863 |
+
"loss": 0.0507,
|
| 1864 |
+
"step": 2650
|
| 1865 |
+
},
|
| 1866 |
+
{
|
| 1867 |
+
"epoch": 0.10619186394666454,
|
| 1868 |
+
"grad_norm": 1.6660882584362238,
|
| 1869 |
+
"learning_rate": 9.256842841203993e-05,
|
| 1870 |
+
"loss": 0.1077,
|
| 1871 |
+
"step": 2660
|
| 1872 |
+
},
|
| 1873 |
+
{
|
| 1874 |
+
"epoch": 0.10659108148029861,
|
| 1875 |
+
"grad_norm": 0.6395774684596824,
|
| 1876 |
+
"learning_rate": 9.26124742555134e-05,
|
| 1877 |
+
"loss": 0.0881,
|
| 1878 |
+
"step": 2670
|
| 1879 |
+
},
|
| 1880 |
+
{
|
| 1881 |
+
"epoch": 0.10699029901393269,
|
| 1882 |
+
"grad_norm": 0.15837676083751612,
|
| 1883 |
+
"learning_rate": 9.265635544124386e-05,
|
| 1884 |
+
"loss": 0.0854,
|
| 1885 |
+
"step": 2680
|
| 1886 |
+
},
|
| 1887 |
+
{
|
| 1888 |
+
"epoch": 0.10738951654756677,
|
| 1889 |
+
"grad_norm": 1.1860026106628092,
|
| 1890 |
+
"learning_rate": 9.270007319573648e-05,
|
| 1891 |
+
"loss": 0.0931,
|
| 1892 |
+
"step": 2690
|
| 1893 |
+
},
|
| 1894 |
+
{
|
| 1895 |
+
"epoch": 0.10778873408120085,
|
| 1896 |
+
"grad_norm": 0.6988001228875755,
|
| 1897 |
+
"learning_rate": 9.274362873184316e-05,
|
| 1898 |
+
"loss": 0.0718,
|
| 1899 |
+
"step": 2700
|
| 1900 |
+
},
|
| 1901 |
+
{
|
| 1902 |
+
"epoch": 0.10818795161483492,
|
| 1903 |
+
"grad_norm": 1.7627547758724476,
|
| 1904 |
+
"learning_rate": 9.278702324896465e-05,
|
| 1905 |
+
"loss": 0.0932,
|
| 1906 |
+
"step": 2710
|
| 1907 |
+
},
|
| 1908 |
+
{
|
| 1909 |
+
"epoch": 0.108587169148469,
|
| 1910 |
+
"grad_norm": 4.563162695809214,
|
| 1911 |
+
"learning_rate": 9.283025793324848e-05,
|
| 1912 |
+
"loss": 0.1143,
|
| 1913 |
+
"step": 2720
|
| 1914 |
+
},
|
| 1915 |
+
{
|
| 1916 |
+
"epoch": 0.10898638668210307,
|
| 1917 |
+
"grad_norm": 0.501400842221048,
|
| 1918 |
+
"learning_rate": 9.287333395778369e-05,
|
| 1919 |
+
"loss": 0.0331,
|
| 1920 |
+
"step": 2730
|
| 1921 |
+
},
|
| 1922 |
+
{
|
| 1923 |
+
"epoch": 0.10938560421573716,
|
| 1924 |
+
"grad_norm": 2.1431330678009024,
|
| 1925 |
+
"learning_rate": 9.291625248279169e-05,
|
| 1926 |
+
"loss": 0.0753,
|
| 1927 |
+
"step": 2740
|
| 1928 |
+
},
|
| 1929 |
+
{
|
| 1930 |
+
"epoch": 0.10978482174937124,
|
| 1931 |
+
"grad_norm": 1.5022132701371798,
|
| 1932 |
+
"learning_rate": 9.295901465581385e-05,
|
| 1933 |
+
"loss": 0.066,
|
| 1934 |
+
"step": 2750
|
| 1935 |
+
},
|
| 1936 |
+
{
|
| 1937 |
+
"epoch": 0.11018403928300531,
|
| 1938 |
+
"grad_norm": 1.3014789034361454,
|
| 1939 |
+
"learning_rate": 9.300162161189557e-05,
|
| 1940 |
+
"loss": 0.0803,
|
| 1941 |
+
"step": 2760
|
| 1942 |
+
},
|
| 1943 |
+
{
|
| 1944 |
+
"epoch": 0.11058325681663939,
|
| 1945 |
+
"grad_norm": 0.5743639067193882,
|
| 1946 |
+
"learning_rate": 9.304407447376704e-05,
|
| 1947 |
+
"loss": 0.0581,
|
| 1948 |
+
"step": 2770
|
| 1949 |
+
},
|
| 1950 |
+
{
|
| 1951 |
+
"epoch": 0.11098247435027346,
|
| 1952 |
+
"grad_norm": 2.296274245959155,
|
| 1953 |
+
"learning_rate": 9.308637435202077e-05,
|
| 1954 |
+
"loss": 0.0775,
|
| 1955 |
+
"step": 2780
|
| 1956 |
+
},
|
| 1957 |
+
{
|
| 1958 |
+
"epoch": 0.11138169188390754,
|
| 1959 |
+
"grad_norm": 2.3308610052506897,
|
| 1960 |
+
"learning_rate": 9.312852234528597e-05,
|
| 1961 |
+
"loss": 0.068,
|
| 1962 |
+
"step": 2790
|
| 1963 |
+
},
|
| 1964 |
+
{
|
| 1965 |
+
"epoch": 0.11178090941754162,
|
| 1966 |
+
"grad_norm": 2.256240916675447,
|
| 1967 |
+
"learning_rate": 9.317051954039962e-05,
|
| 1968 |
+
"loss": 0.0962,
|
| 1969 |
+
"step": 2800
|
| 1970 |
+
},
|
| 1971 |
+
{
|
| 1972 |
+
"epoch": 0.1121801269511757,
|
| 1973 |
+
"grad_norm": 1.7856796465922442,
|
| 1974 |
+
"learning_rate": 9.321236701257485e-05,
|
| 1975 |
+
"loss": 0.0685,
|
| 1976 |
+
"step": 2810
|
| 1977 |
+
},
|
| 1978 |
+
{
|
| 1979 |
+
"epoch": 0.11257934448480977,
|
| 1980 |
+
"grad_norm": 0.19735101163543742,
|
| 1981 |
+
"learning_rate": 9.325406582556589e-05,
|
| 1982 |
+
"loss": 0.0292,
|
| 1983 |
+
"step": 2820
|
| 1984 |
+
},
|
| 1985 |
+
{
|
| 1986 |
+
"epoch": 0.11297856201844385,
|
| 1987 |
+
"grad_norm": 1.3621946498396835,
|
| 1988 |
+
"learning_rate": 9.329561703183045e-05,
|
| 1989 |
+
"loss": 0.0945,
|
| 1990 |
+
"step": 2830
|
| 1991 |
+
},
|
| 1992 |
+
{
|
| 1993 |
+
"epoch": 0.11337777955207792,
|
| 1994 |
+
"grad_norm": 0.40134959605889914,
|
| 1995 |
+
"learning_rate": 9.333702167268908e-05,
|
| 1996 |
+
"loss": 0.1014,
|
| 1997 |
+
"step": 2840
|
| 1998 |
+
},
|
| 1999 |
+
{
|
| 2000 |
+
"epoch": 0.113776997085712,
|
| 2001 |
+
"grad_norm": 0.1841107116358454,
|
| 2002 |
+
"learning_rate": 9.337828077848174e-05,
|
| 2003 |
+
"loss": 0.0863,
|
| 2004 |
+
"step": 2850
|
| 2005 |
+
},
|
| 2006 |
+
{
|
| 2007 |
+
"epoch": 0.11417621461934609,
|
| 2008 |
+
"grad_norm": 0.49244833047293635,
|
| 2009 |
+
"learning_rate": 9.341939536872168e-05,
|
| 2010 |
+
"loss": 0.0499,
|
| 2011 |
+
"step": 2860
|
| 2012 |
+
},
|
| 2013 |
+
{
|
| 2014 |
+
"epoch": 0.11457543215298016,
|
| 2015 |
+
"grad_norm": 0.23498749839126715,
|
| 2016 |
+
"learning_rate": 9.346036645224653e-05,
|
| 2017 |
+
"loss": 0.0862,
|
| 2018 |
+
"step": 2870
|
| 2019 |
+
},
|
| 2020 |
+
{
|
| 2021 |
+
"epoch": 0.11497464968661424,
|
| 2022 |
+
"grad_norm": 3.916038906890403,
|
| 2023 |
+
"learning_rate": 9.350119502736693e-05,
|
| 2024 |
+
"loss": 0.0941,
|
| 2025 |
+
"step": 2880
|
| 2026 |
+
},
|
| 2027 |
+
{
|
| 2028 |
+
"epoch": 0.11537386722024831,
|
| 2029 |
+
"grad_norm": 0.1948321889118585,
|
| 2030 |
+
"learning_rate": 9.35418820820124e-05,
|
| 2031 |
+
"loss": 0.0793,
|
| 2032 |
+
"step": 2890
|
| 2033 |
+
},
|
| 2034 |
+
{
|
| 2035 |
+
"epoch": 0.11577308475388239,
|
| 2036 |
+
"grad_norm": 1.6380239320871577,
|
| 2037 |
+
"learning_rate": 9.35824285938748e-05,
|
| 2038 |
+
"loss": 0.0958,
|
| 2039 |
+
"step": 2900
|
| 2040 |
+
},
|
| 2041 |
+
{
|
| 2042 |
+
"epoch": 0.11617230228751647,
|
| 2043 |
+
"grad_norm": 1.011966587551444,
|
| 2044 |
+
"learning_rate": 9.362283553054931e-05,
|
| 2045 |
+
"loss": 0.0988,
|
| 2046 |
+
"step": 2910
|
| 2047 |
+
},
|
| 2048 |
+
{
|
| 2049 |
+
"epoch": 0.11657151982115055,
|
| 2050 |
+
"grad_norm": 0.9595034384482286,
|
| 2051 |
+
"learning_rate": 9.366310384967302e-05,
|
| 2052 |
+
"loss": 0.0585,
|
| 2053 |
+
"step": 2920
|
| 2054 |
+
},
|
| 2055 |
+
{
|
| 2056 |
+
"epoch": 0.11697073735478462,
|
| 2057 |
+
"grad_norm": 1.6309704442029718,
|
| 2058 |
+
"learning_rate": 9.370323449906096e-05,
|
| 2059 |
+
"loss": 0.0875,
|
| 2060 |
+
"step": 2930
|
| 2061 |
+
},
|
| 2062 |
+
{
|
| 2063 |
+
"epoch": 0.1173699548884187,
|
| 2064 |
+
"grad_norm": 0.8516664642667977,
|
| 2065 |
+
"learning_rate": 9.374322841684018e-05,
|
| 2066 |
+
"loss": 0.0583,
|
| 2067 |
+
"step": 2940
|
| 2068 |
+
},
|
| 2069 |
+
{
|
| 2070 |
+
"epoch": 0.11776917242205277,
|
| 2071 |
+
"grad_norm": 0.2052752626955342,
|
| 2072 |
+
"learning_rate": 9.378308653158114e-05,
|
| 2073 |
+
"loss": 0.0723,
|
| 2074 |
+
"step": 2950
|
| 2075 |
+
},
|
| 2076 |
+
{
|
| 2077 |
+
"epoch": 0.11816838995568685,
|
| 2078 |
+
"grad_norm": 0.5262234856148836,
|
| 2079 |
+
"learning_rate": 9.38228097624272e-05,
|
| 2080 |
+
"loss": 0.0704,
|
| 2081 |
+
"step": 2960
|
| 2082 |
+
},
|
| 2083 |
+
{
|
| 2084 |
+
"epoch": 0.11856760748932094,
|
| 2085 |
+
"grad_norm": 0.3928351586460673,
|
| 2086 |
+
"learning_rate": 9.386239901922172e-05,
|
| 2087 |
+
"loss": 0.1023,
|
| 2088 |
+
"step": 2970
|
| 2089 |
+
},
|
| 2090 |
+
{
|
| 2091 |
+
"epoch": 0.11896682502295501,
|
| 2092 |
+
"grad_norm": 0.8807251297741585,
|
| 2093 |
+
"learning_rate": 9.390185520263314e-05,
|
| 2094 |
+
"loss": 0.0499,
|
| 2095 |
+
"step": 2980
|
| 2096 |
+
},
|
| 2097 |
+
{
|
| 2098 |
+
"epoch": 0.11936604255658909,
|
| 2099 |
+
"grad_norm": 1.3492280712823417,
|
| 2100 |
+
"learning_rate": 9.394117920427792e-05,
|
| 2101 |
+
"loss": 0.0494,
|
| 2102 |
+
"step": 2990
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"epoch": 0.11976526009022316,
|
| 2106 |
+
"grad_norm": 2.7357178664397077,
|
| 2107 |
+
"learning_rate": 9.398037190684144e-05,
|
| 2108 |
+
"loss": 0.0816,
|
| 2109 |
+
"step": 3000
|
| 2110 |
+
}
|
| 2111 |
+
],
|
| 2112 |
+
"logging_steps": 10,
|
| 2113 |
+
"max_steps": 50098,
|
| 2114 |
+
"num_input_tokens_seen": 0,
|
| 2115 |
+
"num_train_epochs": 2,
|
| 2116 |
+
"save_steps": 200,
|
| 2117 |
+
"stateful_callbacks": {
|
| 2118 |
+
"TrainerControl": {
|
| 2119 |
+
"args": {
|
| 2120 |
+
"should_epoch_stop": false,
|
| 2121 |
+
"should_evaluate": false,
|
| 2122 |
+
"should_log": false,
|
| 2123 |
+
"should_save": true,
|
| 2124 |
+
"should_training_stop": false
|
| 2125 |
+
},
|
| 2126 |
+
"attributes": {}
|
| 2127 |
+
}
|
| 2128 |
+
},
|
| 2129 |
+
"total_flos": 0.0,
|
| 2130 |
+
"train_batch_size": 2,
|
| 2131 |
+
"trial_name": null,
|
| 2132 |
+
"trial_params": null
|
| 2133 |
+
}
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|