File size: 8,415 Bytes
31fe04b 400a0bd 31fe04b 400a0bd 31fe04b 400a0bd 31fe04b 400a0bd 31fe04b 400a0bd 31fe04b 400a0bd 31fe04b 400a0bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
---
language:
- en
license: mit
library_name: peft
tags:
- reranking
- information-retrieval
- listwise
- lora
- peft
- generative
base_model: meta-llama/Llama-3.1-8B
datasets:
- abdoelsayed/DeAR-COT
pipeline_tag: text-generation
---
# DeAR-8B-Reranker-Listwise-LoRA-v1
## Model Description
**DeAR-8B-Reranker-Listwise-LoRA-v1** is a LoRA adapter for listwise neural reranking. This adapter enables generative document ranking with Chain-of-Thought reasoning while requiring only ~100MB storage. It achieves near full-model performance on complex ranking tasks.
## Model Details
- **Model Type:** LoRA Adapter for Listwise Reranking
- **Base Model:** meta-llama/Llama-3.1-8B
- **Adapter Size:** ~100MB
- **Training Method:** LoRA with Supervised Fine-tuning + CoT
- **LoRA Rank:** 16
- **LoRA Alpha:** 32
- **Framework:** LLaMA-Factory
## Key Features
β
**Lightweight:** Only 100MB vs 16GB full model
β
**CoT Reasoning:** Generates ranking explanations
β
**Listwise:** Considers document relationships
β
**State-of-the-Art:** Outperforms GPT-4 on NovelEval
β
**Efficient:** Faster training and deployment
## Usage
### Load with PEFT
```python
import torch
from transformers import AutoTokenizer
from peft import AutoPeftModelForCausalLM
# Load LoRA adapter (automatically loads base model)
adapter_path = "abdoelsayed/dear-8b-reranker-listwise-lora-v1"
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
tokenizer = AutoTokenizer.from_pretrained(adapter_path, use_fast=True)
model = AutoPeftModelForCausalLM.from_pretrained(
adapter_path,
torch_dtype=dtype,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Prepare ranking prompt
query = "When did Thomas Edison invent the light bulb?"
documents = [
"Lightning strike at Seoul National University",
"Thomas Edison tried to invent a device for car but failed",
"Coffee is good for diet",
"KEPCO fixes light problems",
"Thomas Edison invented the light bulb in 1879",
]
doc_list = "\n".join([f"[{i}] {doc}" for i, doc in enumerate(documents)])
prompt = f"""I will provide you with {len(documents)} passages, each indicated by a number identifier [].
Rank the passages based on their relevance to the search query: {query}.
{doc_list}
Search Query: {query}.
Rank the passages above based on their relevance to the search query. Output the ranking as a list of numbers."""
# Generate ranking
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=50,
temperature=0.7,
do_sample=False,
pad_token_id=tokenizer.pad_token_id
)
ranking = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print(f"Ranking: {ranking}")
# Output: [4] > [1] > [0] > [3] > [2]
```
### 4-bit Quantization (Low Memory)
```python
from peft import AutoPeftModelForCausalLM
# Load with 4-bit quantization
model = AutoPeftModelForCausalLM.from_pretrained(
adapter_path,
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
```
### Complete Reranking Pipeline
```python
import re
from typing import List
class ListwiseLoRAReranker:
def __init__(self, adapter_path: str):
self.tokenizer = AutoTokenizer.from_pretrained(adapter_path, use_fast=True)
self.model = AutoPeftModelForCausalLM.from_pretrained(
adapter_path,
torch_dtype=torch.bfloat16,
device_map="auto",
low_cpu_mem_usage=True
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def create_prompt(self, query: str, documents: List[str]) -> str:
doc_list = "\n".join([f"[{i}] {doc[:300]}" for i, doc in enumerate(documents)])
return f"""I will provide you with {len(documents)} passages, each indicated by a number identifier [].
Rank the passages based on their relevance to the search query: {query}.
{doc_list}
Search Query: {query}.
Rank the passages above based on their relevance to the search query. Output the ranking as a list of numbers."""
def parse_ranking(self, text: str, num_docs: int) -> List[int]:
numbers = re.findall(r'\[(\d+)\]', text)
ranking = [int(n) for n in numbers if int(n) < num_docs]
# Add missing docs
for i in range(num_docs):
if i not in ranking:
ranking.append(i)
return ranking[:num_docs]
def rerank(self, query: str, documents: List[str]) -> List[int]:
prompt = self.create_prompt(query, documents)
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=50,
do_sample=False,
pad_token_id=self.tokenizer.pad_token_id
)
output_text = self.tokenizer.decode(
outputs[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
return self.parse_ranking(output_text, len(documents))
# Usage
reranker = ListwiseLoRAReranker("abdoelsayed/dear-8b-reranker-listwise-lora-v1")
ranking = reranker.rerank(query, documents)
print(f"Ranked indices: {ranking}")
```
## Training Details
### LoRA Configuration
```yaml
lora_rank: 16
lora_alpha: 32
target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- up_proj
- down_proj
lora_dropout: 0.05
task_type: CAUSAL_LM
```
### Training Setup
- **Framework:** LLaMA-Factory
- **Dataset:** [DeAR-COT](https://huggingface.co/datasets/abdoelsayed/DeAR-COT)
- **Learning Rate:** 1e-5
- **Batch Size:** 4
- **Gradient Accumulation:** 4
- **Epochs:** 2
- **Max Length:** 2048
- **GPUs:** 4x A100 (80GB)
- **Training Time:** ~24 hours (3x faster than full)
- **Memory:** ~50GB per GPU
## Advantages of LoRA
| Feature | LoRA | Full Model |
|---------|------|------------|
| Storage | 100MB | 16GB |
| Training Time | 24h | 72h |
| Training Memory | 50GB | 70GB |
| Performance | 99% | 100% |
| Deployment | Fast | Slow |
## Performance Comparison
### TREC Deep Learning
| Method | DL19 | DL20 | Avg |
|--------|------|------|-----|
| LoRA | 77.6 | 75.3 | 76.5 |
| Full | 77.9 | 75.6 | 76.8 |
| RankGPT-4 | 75.6 | 70.6 | 73.1 |
### NovelEval
| Method | NDCG@10 |
|--------|---------|
| **LoRA** | **90.6** |
| Full | 91.0 |
| GPT-4 | 87.9 |
## When to Use
**Best for:**
- β
Resource-constrained environments
- β
Multiple domain-specific versions
- β
Fast experimentation
- β
Complex reasoning queries
**Use full model for:**
- β Absolute maximum performance
- β Single production deployment
## Limitations
- Slightly lower performance (-0.3 NDCG@10)
- Still slower than pointwise models (~11s)
- Limited to ~20-50 documents per query
- Requires base model for inference
## Related Models
**Full Version:**
- [DeAR-8B-Listwise](https://huggingface.co/abdoelsayed/dear-8b-reranker-listwise-v1)
**Other LoRA:**
- [DeAR-8B-RankNet-LoRA](https://huggingface.co/abdoelsayed/dear-8b-reranker-ranknet-lora-v1)
- [DeAR-8B-CE-LoRA](https://huggingface.co/abdoelsayed/dear-8b-reranker-ce-lora-v1)
**Resources:**
- [DeAR-COT Dataset](https://huggingface.co/datasets/abdoelsayed/DeAR-COT)
- [Teacher Model](https://huggingface.co/abdoelsayed/llama2-13b-rankllama-teacher)
## Citation
```bibtex
@article{abdallah2025dear,
title={DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation},
author={Abdallah, Abdelrahman and Mozafari, Jamshid and Piryani, Bhawna and Jatowt, Adam},
journal={arXiv preprint arXiv:2508.16998},
year={2025}
}
```
## License
MIT License
## More Information
- **GitHub:** [DataScienceUIBK/DeAR-Reranking](https://github.com/DataScienceUIBK/DeAR-Reranking)
- **Paper:** [arXiv:2508.16998](https://arxiv.org/abs/2508.16998)
- **Collection:** [DeAR Models](https://huggingface.co/collections/abdoelsayed/dear-reranking)
|