Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: mit
|
| 5 |
+
library_name: transformers
|
| 6 |
+
tags:
|
| 7 |
+
- reranking
|
| 8 |
+
- information-retrieval
|
| 9 |
+
- pointwise
|
| 10 |
+
- binary-cross-entropy
|
| 11 |
+
- llama
|
| 12 |
+
base_model: meta-llama/Llama-3.1-8B
|
| 13 |
+
datasets:
|
| 14 |
+
- Tevatron/msmarco-passage
|
| 15 |
+
- abdoelsayed/DeAR-COT
|
| 16 |
+
pipeline_tag: text-classification
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# DeAR-8B-Reranker-CE-v1
|
| 20 |
+
|
| 21 |
+
## Model Description
|
| 22 |
+
|
| 23 |
+
**DeAR-8B-Reranker-CE-v1** is an 8B parameter neural reranker trained with Binary Cross-Entropy loss and knowledge distillation. This model uses a classification-based approach to document reranking and is optimized for both accuracy and inference speed.
|
| 24 |
+
|
| 25 |
+
## Model Details
|
| 26 |
+
|
| 27 |
+
- **Model Type:** Pointwise Reranker (Binary Classification)
|
| 28 |
+
- **Base Model:** LLaMA-3.1-8B
|
| 29 |
+
- **Parameters:** 8 billion
|
| 30 |
+
- **Training Method:** Knowledge Distillation + Binary Cross-Entropy Loss
|
| 31 |
+
- **Teacher Model:** [LLaMA2-13B-RankLLaMA](https://huggingface.co/abdoelsayed/llama2-13b-rankllama-teacher)
|
| 32 |
+
- **Training Data:** MS MARCO
|
| 33 |
+
- **Precision:** BFloat16
|
| 34 |
+
|
| 35 |
+
## Key Features
|
| 36 |
+
|
| 37 |
+
β
**Classification-based:** Binary relevance prediction with probabilistic outputs
|
| 38 |
+
β
**Fast Inference:** 2.2s average latency on standard GPU
|
| 39 |
+
β
**Strong Baseline:** Competitive performance across benchmarks
|
| 40 |
+
β
**CoT Enhanced:** Trained with Chain-of-Thought reasoning from teacher
|
| 41 |
+
|
| 42 |
+
## Performance
|
| 43 |
+
|
| 44 |
+
| Benchmark | NDCG@10 |
|
| 45 |
+
|-----------|---------|
|
| 46 |
+
| TREC DL19 | 73.9 |
|
| 47 |
+
| TREC DL20 | 72.1 |
|
| 48 |
+
| BEIR (Avg) | 44.8 |
|
| 49 |
+
| MS MARCO Dev | 68.5 |
|
| 50 |
+
|
| 51 |
+
## Usage
|
| 52 |
+
|
| 53 |
+
### Quick Start
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
import torch
|
| 57 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 58 |
+
|
| 59 |
+
# Load model
|
| 60 |
+
model_path = "abdoelsayed/dear-8b-reranker-ce-v1"
|
| 61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 62 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 63 |
+
model_path,
|
| 64 |
+
torch_dtype=torch.bfloat16
|
| 65 |
+
)
|
| 66 |
+
model.eval().cuda()
|
| 67 |
+
|
| 68 |
+
# Score a query-document pair
|
| 69 |
+
query = "What is llama?"
|
| 70 |
+
document = "The llama is a domesticated South American camelid..."
|
| 71 |
+
|
| 72 |
+
inputs = tokenizer(
|
| 73 |
+
f"query: {query}",
|
| 74 |
+
f"document: {document}",
|
| 75 |
+
return_tensors="pt",
|
| 76 |
+
truncation=True,
|
| 77 |
+
max_length=228,
|
| 78 |
+
padding="max_length"
|
| 79 |
+
)
|
| 80 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
| 81 |
+
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
score = model(**inputs).logits.squeeze().item()
|
| 84 |
+
|
| 85 |
+
print(f"Relevance score: {score}")
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
### Complete Reranking Example
|
| 89 |
+
|
| 90 |
+
```python
|
| 91 |
+
import torch
|
| 92 |
+
from typing import List, Tuple
|
| 93 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 94 |
+
|
| 95 |
+
def load_reranker(model_path: str, device: str = "cuda"):
|
| 96 |
+
"""Load the reranker model and tokenizer."""
|
| 97 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 98 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 99 |
+
model_path,
|
| 100 |
+
torch_dtype=torch.bfloat16
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Configure padding token
|
| 104 |
+
if tokenizer.pad_token is None:
|
| 105 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 106 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 107 |
+
tokenizer.padding_side = "right"
|
| 108 |
+
|
| 109 |
+
model.eval()
|
| 110 |
+
model.to(device)
|
| 111 |
+
return tokenizer, model
|
| 112 |
+
|
| 113 |
+
@torch.inference_mode()
|
| 114 |
+
def rerank(
|
| 115 |
+
tokenizer,
|
| 116 |
+
model,
|
| 117 |
+
query: str,
|
| 118 |
+
documents: List[Tuple[str, str]], # (title, text)
|
| 119 |
+
batch_size: int = 64
|
| 120 |
+
) -> List[Tuple[int, float]]:
|
| 121 |
+
"""
|
| 122 |
+
Rerank documents for a query.
|
| 123 |
+
|
| 124 |
+
Returns:
|
| 125 |
+
List of (doc_index, score) sorted by relevance (descending)
|
| 126 |
+
"""
|
| 127 |
+
device = next(model.parameters()).device
|
| 128 |
+
scores = []
|
| 129 |
+
|
| 130 |
+
for i in range(0, len(documents), batch_size):
|
| 131 |
+
batch = documents[i:i + batch_size]
|
| 132 |
+
|
| 133 |
+
# Prepare batch
|
| 134 |
+
queries = [f"query: {query}"] * len(batch)
|
| 135 |
+
docs = [f"document: {title} {text}" for title, text in batch]
|
| 136 |
+
|
| 137 |
+
inputs = tokenizer(
|
| 138 |
+
queries,
|
| 139 |
+
docs,
|
| 140 |
+
return_tensors="pt",
|
| 141 |
+
truncation=True,
|
| 142 |
+
max_length=228,
|
| 143 |
+
padding=True,
|
| 144 |
+
return_attention_mask=True
|
| 145 |
+
)
|
| 146 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 147 |
+
|
| 148 |
+
# Score batch
|
| 149 |
+
logits = model(**inputs).logits.squeeze(-1)
|
| 150 |
+
scores.extend(logits.cpu().tolist())
|
| 151 |
+
|
| 152 |
+
# Rank by score
|
| 153 |
+
ranked = sorted(enumerate(scores), key=lambda x: x[1], reverse=True)
|
| 154 |
+
return ranked
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# Example
|
| 158 |
+
tokenizer, model = load_reranker("abdoelsayed/dear-8b-reranker-ce-v1")
|
| 159 |
+
|
| 160 |
+
query = "When did Thomas Edison invent the light bulb?"
|
| 161 |
+
documents = [
|
| 162 |
+
("", "Lightning strike at Seoul National University"),
|
| 163 |
+
("", "Thomas Edison tried to invent a device for car but failed"),
|
| 164 |
+
("", "Coffee is good for diet"),
|
| 165 |
+
("", "KEPCO fixes light problems"),
|
| 166 |
+
("", "Thomas Edison invented the light bulb in 1879"),
|
| 167 |
+
]
|
| 168 |
+
|
| 169 |
+
ranking = rerank(tokenizer, model, query, documents)
|
| 170 |
+
print(ranking)
|
| 171 |
+
# Output: [(4, -2.015625), (1, -5.6875), (2, -6.375), (0, -6.5), (3, -6.78125)]
|
| 172 |
+
# Document at index 4 is most relevant
|
| 173 |
+
```
|
| 174 |
+
|
| 175 |
+
## Training Details
|
| 176 |
+
|
| 177 |
+
### Training Data
|
| 178 |
+
- **Primary Dataset:** MS MARCO Passage Ranking (~8M pairs)
|
| 179 |
+
- **CoT Dataset:** [DeAR-COT](https://huggingface.co/datasets/abdoelsayed/DeAR-COT)
|
| 180 |
+
- **Teacher Annotations:** Soft labels from 13B teacher model
|
| 181 |
+
|
| 182 |
+
### Training Configuration
|
| 183 |
+
```python
|
| 184 |
+
{
|
| 185 |
+
"base_model": "meta-llama/Llama-3.1-8B",
|
| 186 |
+
"teacher_model": "abdoelsayed/llama2-13b-rankllama-teacher",
|
| 187 |
+
"loss": "Binary Cross-Entropy",
|
| 188 |
+
"distillation": {
|
| 189 |
+
"temperature": 2.0,
|
| 190 |
+
"alpha": 0.1
|
| 191 |
+
},
|
| 192 |
+
"optimizer": "AdamW",
|
| 193 |
+
"learning_rate": 1e-4,
|
| 194 |
+
"batch_size": 2,
|
| 195 |
+
"gradient_accumulation": 2,
|
| 196 |
+
"epochs": 2,
|
| 197 |
+
"max_length": 228,
|
| 198 |
+
"q_max_len": 32,
|
| 199 |
+
"p_max_len": 196,
|
| 200 |
+
"warmup_ratio": 0.1,
|
| 201 |
+
"weight_decay": 0.01,
|
| 202 |
+
"bf16": true
|
| 203 |
+
}
|
| 204 |
+
```
|
| 205 |
+
|
| 206 |
+
### Hardware
|
| 207 |
+
- **GPUs:** 4x NVIDIA A100 (40GB)
|
| 208 |
+
- **Training Time:** ~34 hours
|
| 209 |
+
- **Framework:** DeepSpeed ZeRO Stage 2
|
| 210 |
+
- **Memory Usage:** ~38GB per GPU
|
| 211 |
+
|
| 212 |
+
### Loss Function
|
| 213 |
+
|
| 214 |
+
**Binary Cross-Entropy** with Knowledge Distillation:
|
| 215 |
+
|
| 216 |
+
```python
|
| 217 |
+
L_total = (1 - Ξ±) * BCE(y_pred, y_true) + Ξ± * KL(Ο(z_s/T), Ο(z_t/T))
|
| 218 |
+
|
| 219 |
+
where:
|
| 220 |
+
- BCE: Binary cross-entropy loss
|
| 221 |
+
- KL: KL divergence
|
| 222 |
+
- z_s: Student logits
|
| 223 |
+
- z_t: Teacher logits
|
| 224 |
+
- T: Temperature (2.0)
|
| 225 |
+
- Ξ±: Distillation weight (0.1)
|
| 226 |
+
- Ο: Sigmoid function
|
| 227 |
+
```
|
| 228 |
+
|
| 229 |
+
## Evaluation Results
|
| 230 |
+
|
| 231 |
+
### TREC Deep Learning
|
| 232 |
+
|
| 233 |
+
| Dataset | NDCG@10 | NDCG@20 | MRR@10 | MAP |
|
| 234 |
+
|---------|---------|---------|--------|-----|
|
| 235 |
+
| DL19 | 73.90 | 69.82 | 87.3 | 44.92 |
|
| 236 |
+
| DL20 | 72.10 | 68.45 | 85.1 | 42.67 |
|
| 237 |
+
|
| 238 |
+
### BEIR Benchmark
|
| 239 |
+
|
| 240 |
+
| Dataset | NDCG@10 | NDCG@100 |
|
| 241 |
+
|---------|---------|----------|
|
| 242 |
+
| MS MARCO | 68.5 | 75.2 |
|
| 243 |
+
| NQ | 51.8 | 69.4 |
|
| 244 |
+
| HotpotQA | 61.2 | 74.8 |
|
| 245 |
+
| FiQA | 46.8 | 62.3 |
|
| 246 |
+
| ArguAna | 58.9 | 71.5 |
|
| 247 |
+
| SciFact | 73.1 | 82.6 |
|
| 248 |
+
| TREC-COVID | 84.7 | 88.3 |
|
| 249 |
+
| NFCorpus | 39.4 | 51.7 |
|
| 250 |
+
| **Average** | **44.8** | **68.2** |
|
| 251 |
+
|
| 252 |
+
### Efficiency Metrics
|
| 253 |
+
|
| 254 |
+
| Metric | Value |
|
| 255 |
+
|--------|-------|
|
| 256 |
+
| Inference Time (batch=64) | 2.2s |
|
| 257 |
+
| Throughput | ~45 docs/sec |
|
| 258 |
+
| GPU Memory (inference) | 18GB |
|
| 259 |
+
| Model Size (BF16) | 16GB |
|
| 260 |
+
|
| 261 |
+
## Comparison
|
| 262 |
+
|
| 263 |
+
| Model | Loss | DL19 | DL20 | BEIR Avg | Speed (s) |
|
| 264 |
+
|-------|------|------|------|----------|-----------|
|
| 265 |
+
| **DeAR-8B-CE** | BCE | 73.9 | 72.1 | 44.8 | 2.2 |
|
| 266 |
+
| **DeAR-8B-RankNet** | RankNet | 74.5 | 72.8 | 45.2 | 2.2 |
|
| 267 |
+
| MonoT5-3B | - | 71.8 | 68.9 | 43.5 | 3.5 |
|
| 268 |
+
| Teacher-13B | - | 73.8 | 71.2 | 44.8 | 5.8 |
|
| 269 |
+
|
| 270 |
+
**Key Observations:**
|
| 271 |
+
- Slightly lower performance than RankNet variant
|
| 272 |
+
- Identical inference speed
|
| 273 |
+
- More stable training (simpler loss)
|
| 274 |
+
- Better for binary relevance tasks
|
| 275 |
+
|
| 276 |
+
## Model Architecture
|
| 277 |
+
|
| 278 |
+
```
|
| 279 |
+
Input Format: "query: [QUERY] document: [TITLE] [TEXT]"
|
| 280 |
+
β
|
| 281 |
+
Tokenization (max_length=228)
|
| 282 |
+
β
|
| 283 |
+
LLaMA-3.1-8B Transformer
|
| 284 |
+
β
|
| 285 |
+
[CLS] Token Pooling
|
| 286 |
+
β
|
| 287 |
+
Linear(hidden_size β 1)
|
| 288 |
+
β
|
| 289 |
+
Sigmoid (optional)
|
| 290 |
+
β
|
| 291 |
+
Relevance Score
|
| 292 |
+
```
|
| 293 |
+
|
| 294 |
+
## When to Use This Model
|
| 295 |
+
|
| 296 |
+
**Best for:**
|
| 297 |
+
- β
Binary relevance classification
|
| 298 |
+
- β
Large-scale reranking (fast inference)
|
| 299 |
+
- β
General-purpose IR tasks
|
| 300 |
+
- β
Resource-constrained environments
|
| 301 |
+
|
| 302 |
+
**Consider alternatives for:**
|
| 303 |
+
- β Listwise ranking (use DeAR-8B-Listwise)
|
| 304 |
+
- β Maximum performance (use RankNet variant)
|
| 305 |
+
- β Extreme low-latency (use 3B models)
|
| 306 |
+
|
| 307 |
+
## Limitations
|
| 308 |
+
|
| 309 |
+
1. **Document Truncation:** Limited to 196 tokens per document
|
| 310 |
+
2. **Query Length:** Optimal for queries β€32 tokens
|
| 311 |
+
3. **Language:** English only
|
| 312 |
+
4. **Domain:** Trained on MS MARCO (web documents)
|
| 313 |
+
5. **Pointwise:** Does not model inter-document dependencies
|
| 314 |
+
|
| 315 |
+
## Bias and Ethical Considerations
|
| 316 |
+
|
| 317 |
+
- **Training Data Bias:** Inherits biases from MS MARCO dataset
|
| 318 |
+
- **Representation Bias:** May perform differently across demographics
|
| 319 |
+
- **Language Bias:** Optimized for English; other languages not evaluated
|
| 320 |
+
- **Domain Bias:** Best performance on web-style documents
|
| 321 |
+
|
| 322 |
+
**Recommendations:**
|
| 323 |
+
- Evaluate fairness for your specific use case
|
| 324 |
+
- Test on diverse query sets
|
| 325 |
+
- Monitor for biased ranking patterns
|
| 326 |
+
- Consider domain-specific fine-tuning
|
| 327 |
+
|
| 328 |
+
## Fine-tuning
|
| 329 |
+
|
| 330 |
+
To fine-tune on your own data:
|
| 331 |
+
|
| 332 |
+
```python
|
| 333 |
+
from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments
|
| 334 |
+
|
| 335 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 336 |
+
"abdoelsayed/dear-8b-reranker-ce-v1",
|
| 337 |
+
num_labels=1
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
training_args = TrainingArguments(
|
| 341 |
+
output_dir="./finetuned-model",
|
| 342 |
+
learning_rate=5e-6, # Lower LR for fine-tuning
|
| 343 |
+
per_device_train_batch_size=4,
|
| 344 |
+
num_train_epochs=1,
|
| 345 |
+
bf16=True,
|
| 346 |
+
logging_steps=100,
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
trainer = Trainer(
|
| 350 |
+
model=model,
|
| 351 |
+
args=training_args,
|
| 352 |
+
train_dataset=your_dataset,
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
trainer.train()
|
| 356 |
+
```
|
| 357 |
+
|
| 358 |
+
## Related Models
|
| 359 |
+
|
| 360 |
+
**DeAR Family (8B):**
|
| 361 |
+
- [DeAR-8B-RankNet](https://huggingface.co/abdoelsayed/dear-8b-reranker-ranknet-v1) - RankNet loss variant
|
| 362 |
+
- [DeAR-8B-Listwise](https://huggingface.co/abdoelsayed/dear-8b-reranker-listwise-v1) - Generative listwise reranker
|
| 363 |
+
- [DeAR-8B-CE-LoRA](https://huggingface.co/abdoelsayed/dear-8b-reranker-ce-lora-v1) - LoRA adapter version
|
| 364 |
+
|
| 365 |
+
**Other Sizes:**
|
| 366 |
+
- [DeAR-3B-CE](https://huggingface.co/abdoelsayed/dear-3b-reranker-ce-v1) - Faster 3B variant
|
| 367 |
+
|
| 368 |
+
**Resources:**
|
| 369 |
+
- [Teacher Model](https://huggingface.co/abdoelsayed/llama2-13b-rankllama-teacher)
|
| 370 |
+
- [DeAR-COT Dataset](https://huggingface.co/datasets/abdoelsayed/DeAR-COT)
|
| 371 |
+
|
| 372 |
+
## Citation
|
| 373 |
+
|
| 374 |
+
```bibtex
|
| 375 |
+
@article{abdallah2025dear,
|
| 376 |
+
title={DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation},
|
| 377 |
+
author={Abdallah, Abdelrahman and Mozafari, Jamshid and Piryani, Bhawna and Jatowt, Adam},
|
| 378 |
+
journal={arXiv preprint arXiv:2508.16998},
|
| 379 |
+
year={2025}
|
| 380 |
+
}
|
| 381 |
+
```
|
| 382 |
+
|
| 383 |
+
## License
|
| 384 |
+
|
| 385 |
+
MIT License
|
| 386 |
+
|
| 387 |
+
## More Information
|
| 388 |
+
|
| 389 |
+
- **GitHub:** [DataScienceUIBK/DeAR-Reranking](https://github.com/DataScienceUIBK/DeAR-Reranking)
|
| 390 |
+
- **Paper:** [arXiv:2508.16998](https://arxiv.org/abs/2508.16998)
|
| 391 |
+
- **Collection:** [DeAR Model Collection](https://huggingface.co/collections/abdoelsayed/dear-reranking)
|