Update README.md
Browse files
README.md
CHANGED
|
@@ -1,202 +1,175 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- **
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
| 78 |
-
###
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
- **
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
[
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
### Framework versions
|
| 201 |
-
|
| 202 |
-
- PEFT 0.13.2
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: mit
|
| 5 |
library_name: peft
|
| 6 |
+
tags:
|
| 7 |
+
- reranking
|
| 8 |
+
- information-retrieval
|
| 9 |
+
- pointwise
|
| 10 |
+
- lora
|
| 11 |
+
- peft
|
| 12 |
+
- binary-cross-entropy
|
| 13 |
+
base_model: meta-llama/Llama-3.1-8B
|
| 14 |
+
datasets:
|
| 15 |
+
- Tevatron/msmarco-passage
|
| 16 |
+
- abdoelsayed/DeAR-COT
|
| 17 |
+
pipeline_tag: text-classification
|
| 18 |
---
|
| 19 |
|
| 20 |
+
# DeAR-8B-Reranker-CE-LoRA-v1
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
## Model Description
|
| 23 |
|
| 24 |
+
**DeAR-8B-Reranker-CE-LoRA-v1** is a LoRA (Low-Rank Adaptation) adapter for neural reranking trained with Binary Cross-Entropy loss. This lightweight adapter requires only ~100MB of storage and can be applied to LLaMA-3.1-8B to achieve near full-model performance with minimal overhead.
|
| 25 |
|
| 26 |
## Model Details
|
| 27 |
|
| 28 |
+
- **Model Type:** LoRA Adapter for Pointwise Reranking
|
| 29 |
+
- **Base Model:** meta-llama/Llama-3.1-8B
|
| 30 |
+
- **Adapter Size:** ~100MB
|
| 31 |
+
- **Training Method:** LoRA with Binary Cross-Entropy + Knowledge Distillation
|
| 32 |
+
- **LoRA Rank:** 16
|
| 33 |
+
- **LoRA Alpha:** 32
|
| 34 |
+
- **Trainable Parameters:** 67M (0.8% of total)
|
| 35 |
+
|
| 36 |
+
## Key Features
|
| 37 |
+
|
| 38 |
+
✅ **Ultra Lightweight:** Only 100MB storage
|
| 39 |
+
✅ **Efficient:** 3x faster training than full fine-tuning
|
| 40 |
+
✅ **High Performance:** 98% of full model accuracy
|
| 41 |
+
✅ **Easy Integration:** Simple adapter loading
|
| 42 |
+
✅ **Classification-based:** Binary relevance prediction
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
## Usage
|
| 46 |
+
|
| 47 |
+
### Load and Use
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
import torch
|
| 51 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 52 |
+
from peft import PeftModel, PeftConfig
|
| 53 |
+
|
| 54 |
+
# Load LoRA adapter
|
| 55 |
+
adapter_path = "abdoelsayed/dear-8b-reranker-ce-lora-v1"
|
| 56 |
+
config = PeftConfig.from_pretrained(adapter_path)
|
| 57 |
+
|
| 58 |
+
# Load tokenizer
|
| 59 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
| 60 |
+
if tokenizer.pad_token is None:
|
| 61 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 62 |
+
|
| 63 |
+
# Load base model
|
| 64 |
+
base_model = AutoModelForSequenceClassification.from_pretrained(
|
| 65 |
+
config.base_model_name_or_path,
|
| 66 |
+
num_labels=1,
|
| 67 |
+
torch_dtype=torch.bfloat16
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Load and merge LoRA
|
| 71 |
+
model = PeftModel.from_pretrained(base_model, adapter_path)
|
| 72 |
+
model = model.merge_and_unload()
|
| 73 |
+
model.eval().cuda()
|
| 74 |
+
|
| 75 |
+
# Score query-document pair
|
| 76 |
+
query = "What is machine learning?"
|
| 77 |
+
document = "Machine learning is a subset of artificial intelligence..."
|
| 78 |
+
|
| 79 |
+
inputs = tokenizer(
|
| 80 |
+
f"query: {query}",
|
| 81 |
+
f"document: {document}",
|
| 82 |
+
return_tensors="pt",
|
| 83 |
+
truncation=True,
|
| 84 |
+
max_length=228,
|
| 85 |
+
padding="max_length"
|
| 86 |
+
)
|
| 87 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
| 88 |
+
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
score = model(**inputs).logits.squeeze().item()
|
| 91 |
+
print(f"Relevance score: {score}")
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
### Batch Reranking
|
| 95 |
+
|
| 96 |
+
```python
|
| 97 |
+
@torch.inference_mode()
|
| 98 |
+
def rerank(tokenizer, model, query: str, documents, batch_size=64):
|
| 99 |
+
scores = []
|
| 100 |
+
device = next(model.parameters()).device
|
| 101 |
+
|
| 102 |
+
for i in range(0, len(documents), batch_size):
|
| 103 |
+
batch = documents[i:i + batch_size]
|
| 104 |
+
queries = [f"query: {query}"] * len(batch)
|
| 105 |
+
docs = [f"document: {title} {text}" for title, text in batch]
|
| 106 |
+
|
| 107 |
+
inputs = tokenizer(queries, docs, return_tensors="pt",
|
| 108 |
+
truncation=True, max_length=228, padding=True)
|
| 109 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 110 |
+
|
| 111 |
+
logits = model(**inputs).logits.squeeze(-1)
|
| 112 |
+
scores.extend(logits.cpu().tolist())
|
| 113 |
+
|
| 114 |
+
return sorted(enumerate(scores), key=lambda x: x[1], reverse=True)
|
| 115 |
+
```
|
| 116 |
|
| 117 |
## Training Details
|
| 118 |
|
| 119 |
+
### LoRA Configuration
|
| 120 |
+
```python
|
| 121 |
+
{
|
| 122 |
+
"r": 16,
|
| 123 |
+
"lora_alpha": 32,
|
| 124 |
+
"target_modules": ["q_proj", "v_proj", "k_proj", "o_proj",
|
| 125 |
+
"gate_proj", "up_proj", "down_proj"],
|
| 126 |
+
"lora_dropout": 0.05,
|
| 127 |
+
"bias": "none",
|
| 128 |
+
"task_type": "SEQ_CLS"
|
| 129 |
+
}
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
### Training Hyperparameters
|
| 133 |
+
- **Learning Rate:** 1e-4
|
| 134 |
+
- **Batch Size:** 4
|
| 135 |
+
- **Gradient Accumulation:** 2
|
| 136 |
+
- **Epochs:** 2
|
| 137 |
+
- **Hardware:** 4x A100 (40GB)
|
| 138 |
+
- **Training Time:** ~12 hours
|
| 139 |
+
- **Memory:** ~28GB per GPU
|
| 140 |
+
|
| 141 |
+
## Advantages
|
| 142 |
+
|
| 143 |
+
| Feature | LoRA | Full Model |
|
| 144 |
+
|---------|------|------------|
|
| 145 |
+
| Storage | 100MB | 16GB |
|
| 146 |
+
| Training Time | 12h | 34h |
|
| 147 |
+
| Performance | 98% | 100% |
|
| 148 |
+
| Memory | 28GB | 38GB |
|
| 149 |
+
|
| 150 |
+
## Related Models
|
| 151 |
+
|
| 152 |
+
- [DeAR-8B-CE](https://huggingface.co/abdoelsayed/dear-8b-reranker-ce-v1) - Full model
|
| 153 |
+
- [DeAR-8B-RankNet-LoRA](https://huggingface.co/abdoelsayed/dear-8b-reranker-ranknet-lora-v1) - RankNet variant
|
| 154 |
+
- [Teacher Model](https://huggingface.co/abdoelsayed/llama2-13b-rankllama-teacher)
|
| 155 |
+
|
| 156 |
+
## Citation
|
| 157 |
+
|
| 158 |
+
```bibtex
|
| 159 |
+
@article{abdallah2025dear,
|
| 160 |
+
title={DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation},
|
| 161 |
+
author={Abdallah, Abdelrahman and Mozafari, Jamshid and Piryani, Bhawna and Jatowt, Adam},
|
| 162 |
+
journal={arXiv preprint arXiv:2508.16998},
|
| 163 |
+
year={2025}
|
| 164 |
+
}
|
| 165 |
+
```
|
| 166 |
+
|
| 167 |
+
## License
|
| 168 |
+
|
| 169 |
+
MIT License
|
| 170 |
+
|
| 171 |
+
## More Information
|
| 172 |
+
|
| 173 |
+
- **GitHub:** [DataScienceUIBK/DeAR-Reranking](https://github.com/DataScienceUIBK/DeAR-Reranking)
|
| 174 |
+
- **Paper:** [arXiv:2508.16998](https://arxiv.org/abs/2508.16998)
|
| 175 |
+
- **Collection:** [DeAR Models](https://huggingface.co/collections/abdoelsayed/dear-reranking)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|