abdoelsayed commited on
Commit
7769e94
·
verified ·
1 Parent(s): f1c59c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +163 -190
README.md CHANGED
@@ -1,202 +1,175 @@
1
  ---
2
- base_model: meta-llama/Llama-3.1-8B
 
 
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.13.2
 
1
  ---
2
+ language:
3
+ - en
4
+ license: mit
5
  library_name: peft
6
+ tags:
7
+ - reranking
8
+ - information-retrieval
9
+ - pointwise
10
+ - lora
11
+ - peft
12
+ - binary-cross-entropy
13
+ base_model: meta-llama/Llama-3.1-8B
14
+ datasets:
15
+ - Tevatron/msmarco-passage
16
+ - abdoelsayed/DeAR-COT
17
+ pipeline_tag: text-classification
18
  ---
19
 
20
+ # DeAR-8B-Reranker-CE-LoRA-v1
 
 
21
 
22
+ ## Model Description
23
 
24
+ **DeAR-8B-Reranker-CE-LoRA-v1** is a LoRA (Low-Rank Adaptation) adapter for neural reranking trained with Binary Cross-Entropy loss. This lightweight adapter requires only ~100MB of storage and can be applied to LLaMA-3.1-8B to achieve near full-model performance with minimal overhead.
25
 
26
  ## Model Details
27
 
28
+ - **Model Type:** LoRA Adapter for Pointwise Reranking
29
+ - **Base Model:** meta-llama/Llama-3.1-8B
30
+ - **Adapter Size:** ~100MB
31
+ - **Training Method:** LoRA with Binary Cross-Entropy + Knowledge Distillation
32
+ - **LoRA Rank:** 16
33
+ - **LoRA Alpha:** 32
34
+ - **Trainable Parameters:** 67M (0.8% of total)
35
+
36
+ ## Key Features
37
+
38
+ **Ultra Lightweight:** Only 100MB storage
39
+ **Efficient:** 3x faster training than full fine-tuning
40
+ **High Performance:** 98% of full model accuracy
41
+ ✅ **Easy Integration:** Simple adapter loading
42
+ **Classification-based:** Binary relevance prediction
43
+
44
+
45
+ ## Usage
46
+
47
+ ### Load and Use
48
+
49
+ ```python
50
+ import torch
51
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
52
+ from peft import PeftModel, PeftConfig
53
+
54
+ # Load LoRA adapter
55
+ adapter_path = "abdoelsayed/dear-8b-reranker-ce-lora-v1"
56
+ config = PeftConfig.from_pretrained(adapter_path)
57
+
58
+ # Load tokenizer
59
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
60
+ if tokenizer.pad_token is None:
61
+ tokenizer.pad_token = tokenizer.eos_token
62
+
63
+ # Load base model
64
+ base_model = AutoModelForSequenceClassification.from_pretrained(
65
+ config.base_model_name_or_path,
66
+ num_labels=1,
67
+ torch_dtype=torch.bfloat16
68
+ )
69
+
70
+ # Load and merge LoRA
71
+ model = PeftModel.from_pretrained(base_model, adapter_path)
72
+ model = model.merge_and_unload()
73
+ model.eval().cuda()
74
+
75
+ # Score query-document pair
76
+ query = "What is machine learning?"
77
+ document = "Machine learning is a subset of artificial intelligence..."
78
+
79
+ inputs = tokenizer(
80
+ f"query: {query}",
81
+ f"document: {document}",
82
+ return_tensors="pt",
83
+ truncation=True,
84
+ max_length=228,
85
+ padding="max_length"
86
+ )
87
+ inputs = {k: v.cuda() for k, v in inputs.items()}
88
+
89
+ with torch.no_grad():
90
+ score = model(**inputs).logits.squeeze().item()
91
+ print(f"Relevance score: {score}")
92
+ ```
93
+
94
+ ### Batch Reranking
95
+
96
+ ```python
97
+ @torch.inference_mode()
98
+ def rerank(tokenizer, model, query: str, documents, batch_size=64):
99
+ scores = []
100
+ device = next(model.parameters()).device
101
+
102
+ for i in range(0, len(documents), batch_size):
103
+ batch = documents[i:i + batch_size]
104
+ queries = [f"query: {query}"] * len(batch)
105
+ docs = [f"document: {title} {text}" for title, text in batch]
106
+
107
+ inputs = tokenizer(queries, docs, return_tensors="pt",
108
+ truncation=True, max_length=228, padding=True)
109
+ inputs = {k: v.to(device) for k, v in inputs.items()}
110
+
111
+ logits = model(**inputs).logits.squeeze(-1)
112
+ scores.extend(logits.cpu().tolist())
113
+
114
+ return sorted(enumerate(scores), key=lambda x: x[1], reverse=True)
115
+ ```
116
 
117
  ## Training Details
118
 
119
+ ### LoRA Configuration
120
+ ```python
121
+ {
122
+ "r": 16,
123
+ "lora_alpha": 32,
124
+ "target_modules": ["q_proj", "v_proj", "k_proj", "o_proj",
125
+ "gate_proj", "up_proj", "down_proj"],
126
+ "lora_dropout": 0.05,
127
+ "bias": "none",
128
+ "task_type": "SEQ_CLS"
129
+ }
130
+ ```
131
+
132
+ ### Training Hyperparameters
133
+ - **Learning Rate:** 1e-4
134
+ - **Batch Size:** 4
135
+ - **Gradient Accumulation:** 2
136
+ - **Epochs:** 2
137
+ - **Hardware:** 4x A100 (40GB)
138
+ - **Training Time:** ~12 hours
139
+ - **Memory:** ~28GB per GPU
140
+
141
+ ## Advantages
142
+
143
+ | Feature | LoRA | Full Model |
144
+ |---------|------|------------|
145
+ | Storage | 100MB | 16GB |
146
+ | Training Time | 12h | 34h |
147
+ | Performance | 98% | 100% |
148
+ | Memory | 28GB | 38GB |
149
+
150
+ ## Related Models
151
+
152
+ - [DeAR-8B-CE](https://huggingface.co/abdoelsayed/dear-8b-reranker-ce-v1) - Full model
153
+ - [DeAR-8B-RankNet-LoRA](https://huggingface.co/abdoelsayed/dear-8b-reranker-ranknet-lora-v1) - RankNet variant
154
+ - [Teacher Model](https://huggingface.co/abdoelsayed/llama2-13b-rankllama-teacher)
155
+
156
+ ## Citation
157
+
158
+ ```bibtex
159
+ @article{abdallah2025dear,
160
+ title={DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation},
161
+ author={Abdallah, Abdelrahman and Mozafari, Jamshid and Piryani, Bhawna and Jatowt, Adam},
162
+ journal={arXiv preprint arXiv:2508.16998},
163
+ year={2025}
164
+ }
165
+ ```
166
+
167
+ ## License
168
+
169
+ MIT License
170
+
171
+ ## More Information
172
+
173
+ - **GitHub:** [DataScienceUIBK/DeAR-Reranking](https://github.com/DataScienceUIBK/DeAR-Reranking)
174
+ - **Paper:** [arXiv:2508.16998](https://arxiv.org/abs/2508.16998)
175
+ - **Collection:** [DeAR Models](https://huggingface.co/collections/abdoelsayed/dear-reranking)