File size: 2,118 Bytes
a3aa6e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-dataset3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-dataset3

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4341
- Rouge1: 0.5489
- Rouge2: 0.2033
- Rougel: 0.5208
- Rougelsum: 0.5212

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 4.1512        | 1.0   | 500  | 2.0642          | 0.503  | 0.172  | 0.4893 | 0.4899    |
| 2.1206        | 2.0   | 1000 | 1.7535          | 0.5288 | 0.1861 | 0.5137 | 0.5143    |
| 1.8841        | 3.0   | 1500 | 1.6171          | 0.5293 | 0.1798 | 0.5069 | 0.5072    |
| 1.7527        | 4.0   | 2000 | 1.5333          | 0.5335 | 0.1837 | 0.5069 | 0.507     |
| 1.6573        | 5.0   | 2500 | 1.4857          | 0.5444 | 0.1941 | 0.5165 | 0.5163    |
| 1.6073        | 6.0   | 3000 | 1.4628          | 0.5405 | 0.197  | 0.5133 | 0.5136    |
| 1.5703        | 7.0   | 3500 | 1.4368          | 0.5519 | 0.2097 | 0.5267 | 0.5271    |
| 1.5415        | 8.0   | 4000 | 1.4341          | 0.5489 | 0.2033 | 0.5208 | 0.5212    |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0