Update README.md
Browse files
README.md
CHANGED
|
@@ -1,22 +1,24 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
| 4 |
-
# Herberta: A Pretrained Model for TCM Herbal Medicine and Downstream Tasks
|
| 5 |
-
|
| 6 |
-
**Tags**:
|
| 7 |
-
- Pretrain_Model
|
| 8 |
-
- transformers
|
| 9 |
-
- TCM
|
| 10 |
-
- herberta
|
| 11 |
-
- text embedding
|
| 12 |
-
|
| 13 |
-
**License**: Apache-2.0
|
| 14 |
-
**Inference**: true
|
| 15 |
-
**Language**: zh, en
|
| 16 |
-
**Base Model**: hfl/chinese-roberta-wwm-ext
|
| 17 |
-
**Library Name**: transformers
|
| 18 |
|
| 19 |
-
|
| 20 |
|
| 21 |
## Introduction
|
| 22 |
|
|
@@ -55,18 +57,6 @@ We named the model "Herberta" by combining "Herb" and "Roberta" to signify its p
|
|
| 55 |

|
| 56 |

|
| 57 |
|
| 58 |
-
<!-- <table>
|
| 59 |
-
<tr>
|
| 60 |
-
<td align="center"><strong>Accuracy</strong></td>
|
| 61 |
-
<td align="center"><strong>Loss</strong></td>
|
| 62 |
-
<td align="center"><strong>Perplexity</strong></td>
|
| 63 |
-
</tr>
|
| 64 |
-
<tr>
|
| 65 |
-
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/RDgI-0Ro2kMiwV853Wkgx.png" alt="Accuracy" width="800"></td>
|
| 66 |
-
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/BJ7enbRg13IYAZuxwraPP.png" alt="Loss" width="800"></td>
|
| 67 |
-
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/lOohRMIctPJZKM5yEEcQ2.png" alt="Perplexity" width="800"></td>
|
| 68 |
-
</tr>
|
| 69 |
-
</table> -->
|
| 70 |
|
| 71 |
### Pretraining Configuration
|
| 72 |
|
|
@@ -77,21 +67,6 @@ We named the model "Herberta" by combining "Herb" and "Roberta" to signify its p
|
|
| 77 |
- Learning Rate: `1e-5` with an epoch-based decay (`epoch * 0.1`)
|
| 78 |
- Tokenization: Sentence-based tokenization with padding for sequences <512 tokens.
|
| 79 |
|
| 80 |
-
#### Modern Textbooks
|
| 81 |
-
- Pretraining Strategy: Dynamic MASK + Warmup + Linear Decay
|
| 82 |
-
- Sequence Length: 512
|
| 83 |
-
- Batch Size: 16
|
| 84 |
-
- Learning Rate: Warmup (10% steps) + Linear Decay (1e-5 initial rate)
|
| 85 |
-
- Tokenization: Continuous tokenization (512 tokens) without sentence segmentation.
|
| 86 |
-
|
| 87 |
-
#### V4 Mixed Dataset (Ancient + Modern)
|
| 88 |
-
- Dataset: Combined 48 modern textbooks + 700 ancient books
|
| 89 |
-
- Pretraining Strategy: Dynamic MASK, warmup, and linear decay (1e-5 learning rate).
|
| 90 |
-
- Epochs: 20
|
| 91 |
-
- Sequence Length: 512
|
| 92 |
-
- Batch Size: 16
|
| 93 |
-
- Tokenization: Continuous tokenization.
|
| 94 |
-
|
| 95 |
---
|
| 96 |
|
| 97 |
## Downstream Task: TCM Pattern Classification
|
|
|
|
| 1 |
---
|
| 2 |
+
tags:
|
| 3 |
+
- PretrainModel
|
| 4 |
+
- TCM
|
| 5 |
+
- transformer
|
| 6 |
+
- herberta
|
| 7 |
+
- text-embedding
|
| 8 |
license: apache-2.0
|
| 9 |
+
language:
|
| 10 |
+
- zh
|
| 11 |
+
- en
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
base_model:
|
| 15 |
+
- hfl/chinese-roberta-wwm-ext-large
|
| 16 |
+
new_version: XiaoEnn/herberta_seq_512_V2
|
| 17 |
+
inference: true
|
| 18 |
+
library_name: transformers
|
| 19 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# Herberta: A Pretrained Model for TCM Herbal Medicine and Downstream Tasks
|
| 22 |
|
| 23 |
## Introduction
|
| 24 |
|
|
|
|
| 57 |

|
| 58 |

|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
### Pretraining Configuration
|
| 62 |
|
|
|
|
| 67 |
- Learning Rate: `1e-5` with an epoch-based decay (`epoch * 0.1`)
|
| 68 |
- Tokenization: Sentence-based tokenization with padding for sequences <512 tokens.
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
---
|
| 71 |
|
| 72 |
## Downstream Task: TCM Pattern Classification
|