--- license: mit tags: - text-classification - prompt-filtering - moderation - distilbert - transformers datasets: - VerifiedPrompts/cntxt-class-final language: - en pipeline_tag: text-classification widget: - text: "Write a LinkedIn post about eco-friendly tech for Gen Z entrepreneurs." example_title: Context-rich prompt - text: "Write something" example_title: Vague prompt --- # 📘 Model Card: CNTXT-Filter-Prompt-Opt ## 🔍 Model Overview **CNTXT-Filter-Prompt-Opt** is a lightweight, high-accuracy text classification model designed to evaluate the **contextual completeness of user prompts** submitted to LLMs. It acts as a **gatekeeper** before generation, helping eliminate vague or spam-like input and ensuring only quality prompts proceed to LLM2. - **Base model**: `distilbert-base-uncased` - **Trained on**: 200k labeled prompts - **Purpose**: Prompt validation, spam filtering, and context enforcement --- ## 🎯 Intended Use This model is intended for: - Pre-processing prompts before LLM2 generation - Blocking unclear or context-poor requests - Structuring user input pipelines in AI apps, bots, and assistants --- ## 🔢 Labels The model classifies prompts into 3 categories: | Label | Description | |-------|-------------| | `has context` | Prompt is clear, actionable, and self-contained | | `missing platform, audience, budget, goal` | Prompt lacks structural clarity | | `Intent is unclear, Please input more context` | Vague or incoherent prompt | --- ## 📊 Training Details - **Model**: `distilbert-base-uncased` - **Training method**: Hugging Face AutoTrain - **Dataset size**: 200,000 prompts (curated, curriculum style) - **Epochs**: 3 - **Batch size**: 8 - **Max seq length**: 128 - **Mixed Precision**: `fp16` - **LoRA**: ❌ Disabled - **Optimizer**: AdamW --- ## ✅ Evaluation | Metric | Score | |--------|-------| | Accuracy | 1.0 | | F1 (macro/micro/weighted) | 1.0 | | Precision / Recall | 1.0 | | Validation Loss | 0.0 | The model generalizes extremely well on all validation samples. --- ## ⚙️ How to Use ```python from transformers import pipeline classifier = pipeline("text-classification", model="VerifiedPrompts/CNTXT-Filter-Prompt-Opt") prompt = "Write a business plan for a freelance app in Canada." result = classifier(prompt) print(result) # [{'label': 'has context', 'score': 0.98}]