--- license: mit --- This repository contains the model weights of the BERT model trained using masked language modelling on 60% of the [GuacaMol](https://pubs.acs.org/doi/abs/10.1021/acs.jcim.8b00839) dataset. Further information can be found in our [publication](https://arxiv.org/abs/2503.03360). ```python from transformers import AutoModel, AutoTokenizer mols = [ "CCOc1cc2nn(CCC(C)(C)O)cc2cc1NC(=O)c1cccc(C(F)F)n1", "CN(c1ncc(F)cn1)[C@H]1CCCNC1", "CC(C)(Oc1ccc(-c2cnc(N)c(-c3ccc(Cl)cc3)c2)cc1)C(=O)O", "CC(C)(O)CCn1cc2cc(NC(=O)c3cccc(C(F)(F)F)n3)c(C(C)(C)O)cc2n1", # ... ] tokenizer = AutoTokenizer.from_pretrained("UdS-LSV/da4mt-mlm-60") model = AutoModel.from_pretrained("UdS-LSV/da4mt-mlm-60") inputs = tokenizer(mols, add_special_tokens=True, truncation=True, max_length=128, padding="max_length", return_tensors="pt") embeddings = model(**inputs).last_hidden_state[:, 0, :] ``` ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F680a578d0009ac929a7389a9%2FFbe2M5anl1ZPm0J8k0jlD.png) ### See also - https://huggingface.co/UdS-LSV/da4mt-mlm-30 - https://huggingface.co/UdS-LSV/da4mt-mtr-30 - https://huggingface.co/UdS-LSV/da4mt-mtr-60